November 16-18th, 2022
—— e '

Indue;e}ildnt' -y

Conference

Introduction to Memory Allocation:
Design and Implementation

Social: @MichaelShah 17:00-18:00, Wed, 16th November 2022
Web : mshah.io
Courses: courses.mshah.io https://handmade-seattle.com/

YouTube: . : :
waw . voutube . com/c/MikeShah 60 minutes | Introductory/Intermediate Aud1ence1

https://handmade-seattle.com/
https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

Goal(s) for today

What you're going to learn

e For our audience
o Learn about memory allocation
o Understand how we would implement a memory allocator from scratch
o Look at different types of allocators

Look at the design of some of the more popular allocators

e The target experience level for this talk is probably more beginner level
o | think beginners will get a lot out of the examples and resources in one place
o | hope this talk encourages intermediate users to think and try building an allocator
m (This is the handmade community after all, | assume folks will want to build at least a
simple implementation at some point :))
o | think experts will have strong opinions already on this topic already

O

Your Tour Guide for Today

by Mike Shah (he/him)

Associate Teaching Professor at Northeastern University in

Boston, Massachusetts.
o | teach courses in computer systems, computer graphics, and game
engine development.
o My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

| do consulting and technical training on modern C++,

Concurrency, OpenGL, and Vulkan projects
o (Usually graphics or games related)

| like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

More online training coming at

http://www.mshah.io
http://courses.mshah.io

Code for the talk

e Located here:
https://github.com/MikeShah/Talks/tree/main/2022 Handmade Seattle

H MikeShah/Talks Public

{> Code @ Issues 19 Pull requests @ Actic

¥ main + Talks/2022_Handmade_ Seattle /

https://github.com/MikeShah/Talks/tree/main/2022_Handmade_Seattle

The abstract that you read and enticed
Abstract you to join me is here!

Has anyone told you that memory allocation is too slow? Do your colleagues
*shutter® when you say malloc? Is malloc actually slow? How would we
know if allocation is too slow? In this talk | will provide an introduction to
stack and heap based memory allocation strategies and trade-offs. We'll
understand the difference between stack and heap based memory, and then
move on to different implementations of stack and heap based allocators
and where they might be used. Throughout the talk, | will also show you how
to build a simple heap memory allocator to demonstrate by example some of
the design decisions that you have to make.

Prerequisite Knowledge for this Presentation

With a few links so you can get up to speed if needed

Note: I'm going to flip through these quite fast -- our audience in attendance is
likely well versed, but for you folks in the future watching this | hope this is helpful.

Prereq 1/4 - What is a raw pointer?

If this picture makes sense
to you, and you can explain
in your own words what a
pointer is -- let's proceed!

Don’t have the prerequisite?

Search on YouTube Learn and

understand (almost) everything
about the fundamentals of C++
pointers in 96 minutes

l

oxf8888888

Oxf8888884

42

Oxf8888888

int X 42 ;

(int)

int* px = &x;

(pointer to
integer)

https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw

Prereq 2/4 - There are multiple types of physical memory

e It's useful to understand there's a memory

hierarchy, with different types of memory,

o and ‘the why’ for the different layers (locality)
and how that improves performance we have it
for performance

e |t will be useful to know a little bit about

how virtual memory [wiki] works
o And why virtual memory allows programmers
to ‘think’ think about memory as a contiguous
segment.

Computer Memory Hierarchy

random access memory
fast, affordable

of flash / USB memory
large capacit shart ter slower, cheap
rge si 't of hard drives
very large capacity mid term slow, very cheap
large size power off tape backup
very large capacity long term very slow, affordable

Diagram of the computer memory hierarchy =

https://en.wikipedia.org/wiki/Memory hierarchy

10

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Memory_hierarchy

Prereq 3/4 I,II assume you’ve used maIIOC/free found in<stdlib.h> or <malloc.h>

1

e void* malloc(size_t size): .

4

o On Success Returns a pointer to a memory block of at least size 5 int main(){
bytes
m For x86 this memory is aligned to 8-byte boundaries AT daks S R
m For x86-64 this memory is aligned to 16-byte boundaries Seniad v

o Asize of 0 returns NULL o

o Unsuccessful allocation: returns NULL(0)
e void free(void *p):

o Reclaims memory allocated by malloc, calloc, or realloc. e
m (Returns the block pointed at by p to pool of available e
memory)
o p must come from previous call to malloc (or realloc) free(data);
m Note: Never use free with delete (used in C++), these are return ¢;

different allocators!
e void* calloc(size_t nmemb, size_t size):
o Similar to malloc, but initializes the allocated block to zero.
e void* realloc(void* ptr, size_t size);
o Changes size of previously allocated block, contents of new block
unchanged

11

Most example code will just use plain C or
C++, and you can translate to whatever

language you like.

Note: Sometimes I'll use ‘malloc’ or ‘new’
depending on what's more convenient or
clear but the idea is interchangeable

12

One last note -- examples are often graphics/games (1/2)

e Most of my examples will be slanted towards 3D graphics/game programming

o My apologies and | take no offense if you don’t like or play video games!

o Most of the material from this presentation should be able to be applied to other industries
(especially where memory allocation matters!)

o) e.g. low latency trading applications, computational biology, etc.

e Also, I’'m going to break every *good* powerpoint rule about the amount of

text on a slide that is appropriate.

o Why? This is somewhat my style, but | personally like having slides where | can remember
what the speaker was talking about.

13

Alright, let's talk
about memory
allocators!

Memory Allocators

Why do we care? What are the Benefits?

15

Performance is the currency
of computing.

16

“Performance is the currency
of computing. You can often
“buy” needed properties [of
software] with performance” -
Charles Leiserson

https://en.wikipedia.org/wiki/Charles_E._Leiserson

Performance

Pragmatically, better performance
means you can do more, or more
interesting computation elsewhere

with your resources.
o Often this means better ‘something’
which is often:

Graphics

Al

More precise physics
Gameplay

More battery life

etc.

So when creating a memory
allocator we’ll achieve
performance by thinking about
things like ‘locality’ and
‘contention’

3DMAR|(w BENCHMARKS STORE SUPPORT RESULTS HALLOF FAME

BENCHMARK YOUR PC TODAY

https://www.3dmark.com/

18

https://www.3dmark.com/

Safety

Memory allocators can
provide a layer of abstraction

for safety

o https://news.ycombinator.com/it
em?id=33553668

National Security Agency ' Cybersecurity Information Sheet

Software Memory Safety

Executive summary

Modern society relies heavily on software-based automation, implicitly trusting
developers to write software that operates in the expected way and cannot be
compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018
70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also
found a similar percentage of memory safety vulnerabilities over several years in
Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code
execution or other adverse effects, which can often compromise a device and be the
first step in large-scale network intrusions.

https://media.defense.qov/2022/Nov/10/2003112742/-1/

-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

19

https://news.ycombinator.com/item?id=33553668
https://news.ycombinator.com/item?id=33553668
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

3.

Economics

Better utilization of memory,
less time spent on cpus, and
lower costs

(We can probably quantify
this by measuring how well
our allocators prevent or
reduce bugs and save
engineers time)

How do you pay for AWS?

I

Pay-as-you-go

Pay-as-you-go allows you to easily adapt to changing
business needs without overcommitting budgets and
improving your responsiveness to changes. With a
pay-as-you-go model, you can adapt your business
depending on need and not on forecasts, reducing
the risk of overprovisioning or missing capacity.

Read more »

Save when you commit

For AWS Compute and AWS Machine Learning,
Savings Plans offer savings over On-Demand in
exchange for a commitment to use a specific amount
(measured in $/hour) of an AWS service or a category
of services, for a one- or three-year period.

Read more »

%@

Pay less by using more

With AWS, you can get volume based discounts and
realize important savings as your usage increases. For
services such as S3, pricing is tiered, meaning the
more you use, the less you pay per GB. AWS also gives
you options to acquire services that help you address
your business needs.

Read more »

ase&aws Droducts pricing.sort-order=asc&awsf. Free°/020T|er%20Tvpe *all&awsf. tech category=>all

Only pay for what you use

With Google Cloud’s pay-as-you-go pricing structure, you

only pay for the services you use. No up-front fees. No

termination charges. Pricing varies by product and usage—

view detailed price list.

https://cloud.google.com/pricing/?gclid=Cj0KCQIiApb2bBhDYARISAChHCOtIUZxgl_AnVEhB

EzfKLV8SUhbzKzbK1S9a9v2bNGhyHVXyKoh2flaAkUcEALw_wcB&gclsrc=aw.ds 20

https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhBEzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds
https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhBEzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds

Should | still write my own allocator? (1/2)

e A simple one (which also might be the right one) at the least will give you an

appreciation | think of memory.
o You will have to think about trade-offs (which is what different allocators offer) which is a good
thing.
o For newer programmers (especially when using purely C) | think it may also give you a ‘new
mental model’
m C tomeis a ‘data layout language’
e We're just accessing (reading/writing) ‘bytes’ from a giant array of memory.

21

To the handmade community

| think we just like to know how things work

- Sometimes it's the right thing to do

- i.e. build a tool/library that solves your exact

problem given your input.

But importantly, it helps us innovate later.
And as | said, it may give you another way to *think*
about computer science, abstraction, and models of
computation
(psst...and it’s fun!)

Why should you not write an allocator?

e You don’t have the budget (time & money) to spend on this

o Creating an allocator requires some amount of thinking and design before starting
o It's possible that a new allocator introduces complexity that is not needed in your project
beyond what well purposed global allocators (e.g. malloc or new) offer.

e You don’t really need better performance beyond what a general allocator
(e.g. ‘malloc’ in C or ‘new’ in C++) provide.

23

(Quick Review)

Hardware -- Our “Working Memory”

(Also called ‘main memory’ or specifically DRAM - Dynamic Random Access Memory)

. L5 %, B RRRA danmn AR o
® i g it @

24

We have many types of physical memory

e The goal of memory is to store ‘data’ L :
o The duration of that storage could vary depending on < Y i ——;e
the storage medium
m (e.g. a hard drive or cloud storage should store
information indefinitely)

e (Aside: As an expert, you're probably thinking
more about the mediums, allocators, allocation
size, where the memory lives, data access
patterns, data lifetime and various ‘misses’ that
can occur in different caches.)

25

Programmers View of working (or ‘main’) memory (1/3)

So roughly speaking we have a
contiguous block of memory that
looks something like this.

Address (in Hex)

Value

0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000

So roughly speaking we have a
contiguous block of memory that
looks something like this.

When we create a variable, a
certain amount of that storage is
allocated for that variable.

Address (in Hex)

Value

0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000

So roughly speaking we have a
contiguous block of memory that
looks something like this.

When we create a variable, a
certain amount of that storage is

allocated for that variable.
o for example
m int x = 42;
m (int is usually 4 bytes,
thus 4 bytes taken in
the illustration where 1
box = 1 byte of memory)

Address (in Hex)

Value

0x1000000B

0x1000000A

0x10000009

0x10000008

42

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000

Operating System View of Processes (1/3)

Now keep in mind we have many

programs running at once
o So per process our operating system
has given some memory allocated to
each process.

Address (in Hex)

Value

0x10000000
+ N bytes

0x10000000

Now keep in mind we have many

programs running at once
o So per process our operating system
has given some memory allocated to
each process.
m Here are two processes for
example

Address (in Hex)

Value

0x20000000 + M

Process |

0x20000000 B B
0x1ooo-c;-ooo N

Process |

0x10000000 A B

(@)

Let’s focus on just one process and
zoom in a little bit on the memory in
that single process

Address (in Hex)

Value

0x20000000 + M

0x20000000

Process |

B

0x10000000 + N

0x10000000

Process
A

(Quick Review)

Segments of a Running
Process

Address (in Hex) Value
0x10000000 + N
Process
A

0x10000000

A Single Processes Memory Segments (1/2)

A process (i.e. a program running on your
program) is organized into a few segments of
memory

Address (in Hex) Value
0x10000000 + N
Process
A

0x10000000

A process (i.e. a program running on your
program) is organized into a few segments of

memory

o (Read from bottom to top)

code (or .text) is where our code is

data (initialized and uninitialized data stored in
an object file)

heap for dynamically allocated memory

stack for our ‘temporary’ memory

(Aside: There may be many other segments as
well -- use otool or objdump to see other
sections like debug, exception table, etc.)

Address (in Hex)

Value

0x10000000 + N

Stack

Heap

Data

0x10000000

Code

(Aside) From a Code Standpoint

A process on an
operating system is
just a ‘struct’

(@)

Observer there’s a
pointer to the stack
Each process also
gets a ‘page table’
(page definition
useful later) for heap
allocated memory

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

// Per-process state

struct proc {

3

uint sz;

pde_t* pgdir;

char *kstack;

enum procstate state;
volatile int pid;

struct proc *parent;
struct trapframe *tf;
struct context *context;
void *chan;

int killed;

struct file *ofile[NOFILE];
struct inode *cwd;
struct shared *shared;
char name[16];

//
//
//
//
//
//

//
1t
//
//
//

//

Size of process memory (bytes)
Page table
Bottom of kernel stack for this process

Process state

Process ID

Parent process

Trap frame for current syscall
swtch() here to run process

If non-zero, sleeping on chan
If non-zero, have been killed
open files

Current directory

Shared memory record (@ -> none)
Process name (debugging)

Stack

https://github.com/jeffallen/xv6/blob/master/proc.h

Heap

Data

Code

35

https://github.com/jeffallen/xv6/blob/master/proc.h

Memory Allocation

Stack

Heap

Data

Code

36

Memory Allocation

In order to understand the different ‘segments’ of memory,
let's take a look at ‘stack’ and ‘heap’ memory.

Stack

Heap

Data

Code

37

A Process and its stack memory (1/5)

1 // g++ —g —-std=c++20 stackmemory.cpp -0 prog

2 #include <iostream>

3 int main(){

int x="42;
std::cout << &x << '\n';

return 0;

4
5
6
7
8
9

}

Address (in Hex) Value
0x16d5ff988
Stack
Heap
Data
0x10000000

Code

1 // g++ —g —-std=c++20 stackmemory.cpp -0 prog

2 #include <iostream> Address (in Hex) Value

3 int main(){ 0x16d5ffo88
Stack

e Executing this line, we’ll allocate on the
‘'stack’ space for x.
o X stores the value ‘42’ Heap
Data
0x10000000 C

ode

1 // g++ —g —-std=c++20 stackmemory.cpp -0 prog

2 #include <iostream> Address (in Hex) Value

3 int main(){ 0x16d5ff988 “

e Executing this line, we’ll allocate on the

‘'stack’ space for x.
o X stores the value ‘42’

Heap

Data

0X10(-)-(-)0000 COde

1 // g++ —g —-std=c++20 stackmemory.cpp -0 prog
2 #include <iostream>

3 int main(){

A

5 int Xx=42;

Estdircout J[EX[<< WG|

And we can use ‘&’ operator to retrieve that
actual stack address!

Address (in Hex)

Value

0x16d5ff988 “
Heap
Data
0x10000000

Code

1 // g++ —g —-std=c++20 stackmemory.cpp -0 prog

2 #include <iostream> | Address (in Hex) Value

3 int main(){ 0x16d5ff988 “

A

5 int Xx=42;

6 std::cout << &x << '\n';

7

8 return 9;

9 }

e And we can use ‘&’ operator to retrieve that

actual stack address! Heap
imike@Michaels—-MacBook—-Air 2022_corecpp % ./prog —
0x16d5f 988 Data

0x10000000 C
ode

Stack Allocation With Multiple Variables (1/4)

#include

int main(){

int x= :

int y= :
std::cout << &x << '\n';
std::cout << &y << '\n';

return 0;

e Here’s another example showing what
happens when you allocate multiple

variables.
o The stack grows downward in the order of the
allocations.

Address (in Hex) Value
Ox16d7f38d8
0x16d7f38d4 Stack
Heap
Data
0x10000000

Code

: clude
int main(){

std::cout << & << '\n';
std::cout << &y << '\n';

return 0;

Here's another example showing what
happens when you allocate multiple
variables.

@)

The stack grows downward in the order of the
allocations.

Address (in Hex)

Value

0x16d7138d8 m
0x16d7f38d4 B
Heap
Data
0x10000000

Code

Address (in Hex) Value
0x16d7f38d8
0x16d738d4
e Here’s another example showing what i
happens when you allocate multiple H i
variables. eap
o The stack grows downward in the order of the
allocations. Data -
0x10000000 C |
ode

#include Address (in Hex) Value
int main(){ 0x16d7f38d8

1
2 #
3
A
5
6
7
8

int x= : 0x16d7f38d
int y= :
std::cout << &x << '\n'; —
std::cout << &y << '\n'; |
return 9; m
e Observe the memory addresses growing i
downward |

Heap
Data -
0x10000000 (3()(163

mike@Michaels—MacBook—-Air 2022_corecpp % ./prog
Ox16d/138d8
0x16d7f38d4

Automatic Memory Management -- Local Variables Popped off stack (1/5)

Address (in Hex) Value
Ox 16773848
: 0x16d7f38d4
int y= :
std::cout << & << '\n'; m
std::cout << &y << " B
return 0; B
o[': Now when we reach the end of our current scope i
o Anything allocated on the stack within the ‘block scope’ i
(i.e. current stack frame) will be ‘popped’ off the stack Heap
o This is effectively done by moving a ‘stack pointer’ to the
next available location to overwrite. Data m
0x10000000 C |
ode

-

Now when we reach the end of our current scope

(@]

NVNoOoONOCOGPPWPN PR

Address (in Hex)

[
=

+

3 el
o -
He O
-)

~~

0x16d773808

int x= 42; 0x16d7138d4

Stack Pointe__r_

int y=

"

I
std::cout << &x << '\n';
std::cout << &y <<

return 9;

Anything allocated on the stack within the ‘block scope’

Value

(i.e. current stack frame) will be ‘popped’ off the stack

Heap

This is effectively done by moving a ‘stack pointer’ to the

next available location to overwrite.

Data -

0x10000000

Code

H
std::cout << &x <<
std::cout << &y <<

return 0;
o[': Now when we reach the end of our current scope

o Anything allocated on the stack within the ‘block scope’
(i.e. current stack frame) will be ‘popped’ off the stack

o This is effectively done by moving a ‘stack pointer’ to the
next available location to overwrite.

Address (in Hex)

0x16d7f38d8

Stack Pointer

Value

Heap

Data

0x10000000

Code

-

Stack Pointer

.
I
.
I

std::cout << &x <<

std::cout << &y <<

return 0;

Now when we reach the end of our current scope

(@]

Anything allocated on the stack within the ‘block scope’
(i.e. current stack frame) will be ‘popped’ off the stack
This is effectively done by moving a ‘stack pointer’ to the
next available location to overwrite.

Address (in Hex) Value
0x16d7f38d4
Heap
Data
0x10000000

Code

So at this point:

e We understand that stack memory is automatically
managed for us
o Memory is placed on the stack
o Stack allocated memory will be reclaimed at the end

of its block scope
e Pretty simple model!
o (And for performance working with memory on the
stack is fast!)

51

NV 0ONOOL P WN P

// ©file alloca_example.c
#include <stdio.h> // printf
#include <stdlib.h> // alloca
#include <string.h> // strcpy
#include <ctype.h> // toupper

void PrintUpperCase(charx nullTerminatedCharArray){

}

// Allocate on the stack for a new mutated string
// Add +1 for the null terminated character

charx printName = (char*strlen(nullTermlnatedCharArray)+1),'

strcpy(printName,nullTerminatedCharArray);

// Set the individual characters to uppercase

size_t i=0;

while(printNamel[i] !'= '\0@'){
printName[i] = toupper(nullTerminatedCharArray[il);
++1;

}

// Print all at once the uppercase string with an endline
printf("%s\n", printName);

// Entry point of program
int main(){

// String literal allocated in static storage with \@ terminator
PrintUpperCase("some string");

return 0;

Quick Note: We can use
‘alloca’ to also explicitly
allocate on the stack as well.

‘alloca’ would be our first
example a memory allocator
-- this one with a special
purpose to allocate memory
on the stack

- (1/2)

How do folks feel about this huge memory
allocation on the stack?

*

PR

Hint* which way does stack grow (in our example)?
// @file alloca_big.c

#include <stdlib.h> // alloct

// Entry point of program

int main(){

charx buffer = |(charx)alloca(100000000);

return 0;

il
2
3
A
5
6
7
8
&
0
1

Address (in Hex) Value
0x16d7f38d8
0x16d7f38d4 D IAUN
Heap
Data
0x10000000
Code

Answer: Our stack is going to overflow --

overwriting other segments of memory -- this
Is bad.
Our stack is a ‘fixed size’

PR

il
2
3
A
5
6
7
8
&
0
1

// @file alloca_big.c
#include <stdlib.h> // alloct

// Entry point of program

int main(){
charx buffer =

return 0;

(charx)alloca(100000000);

Address (in Hex) Value
0x16d7f38d8
0x16d7f38d
Heap
Data
0x10000000 (:
ode

How much data
do you see here?

a.) A lot (More
than 7MB)
b.) Very little

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

698767
6883
28756/
& 1] H14924
JCLQSTERSSM¢$Q§156332
USTERSHW == 17483

383151
46
2858
118451
"3275

55

https://youtu.be/TMorJX3Nj6U?t=5255

28756
R } =
BCANDIDATES, 615924

; L CLUSTERSSW, ~ 166032
- —~ | . 7 I ANS HSTERSHU® = 17483

How much data .
do you see here? '

383151

a.) A lot (More
than 7m Et?;;t:(/a/\l/cl)zift?ebjﬁ\r/leoarIJXSNi6U?t:5255
b.) Very little

Humor me here -- there’s ‘a lot’ of

data on cpu and gpu (and that is
probably an understatement!)

https://youtu.be/TMorJX3Nj6U?t=5255

mike@Michaels—MacBook—-Air 2022 Handmade_Seattle %
cputime unlimited

filesize unlimited

datasize

stacksize

coredumpsize
addressspace
memorylocked
maxproc
descriptors

My stack on my machine is only 7
mb

https://youtu.be/TMorJX3Nj6U?t=5255

Can we store all this data on the stack? (1/2)

Address (in Hex) Value

Stack Pointer
0x16d773804 Stack

e So my question is, can we store all of this data on our

‘stack’?
o Let's assume this is several gigabytes of data for arguments H eap
sake, and that a good chunk of that is on the CPU
o (Dear experts :) -- just assume there is a lot of data, even if D t
this is a more CPU/GPU memory bound example) a a

0X10(-)-(:)0000 COde

e The answer is no.
Address (in Hex) Value

e Our stack grows downward, and -

_ x16d7f38d8
would overflow and overwrite 1 Sta{ ™
other sensitive segments of our
running processes memory
o S0 we have another

mechanism for ‘large
allocations’ or otherwise

allocations we cannot figure Hee

out at compile-time
P Da

A
q
0x10000000 '\>C o d\b/
V

Stack Pointer

Heap Memory

For ‘large’ and/or ‘long lived’ Memory
Allocations

Stack

Heap
Data

Code

Heap Memory

Heap memory is memory that we
allocate at ‘run-time’

“The heap’ is some data structure
that stores our successful requests
for memory.

o In order to use that memory, we
need a ‘pointer’ which stores
that address of memory

o We’ll also need some
bookkeeping mechanism
which we’ll talk about later

Address (in Hex) Value
0x16d7738d8
O0x16d713804 Stack
\\ on 5
Data

0x10000000

Code

Heap Visualization (1/9)

e The heap data structure might look Address (in Hex) Value
something like this 0x16d7f38d8
e A‘large collection of bytes e[| Otack
0x70000000 > 0x70000000 + N
Heap
Data
0x10000000

Code

e We ‘manually’ allocate memory using new | | Address (in Hex) Value

o e.q.int* data = new int: 0x16d7f38d8
° 0x16d7f38d4 Stack

0x70000000 > 0x70000000 + N

Heap

Data

0x1 0(-)-(-)0000 COd e

e We ‘manually’ allocate memory using new | | Address (in Hex) Value

© e.g. int* data = new ln-t; 0x16d7f38d8 StaCk
o And assign with: *data = 77; 0x16d7f38d4

4 77

0x70000000 > 0x70000000 + N

Heap

Data

0x1 0(-)-(-)0000 COd e

e We ‘manually’ allocate memory using new | | Address (in Hex) Value
o e.g.int* data = new int; 0x16d7138d8 Stack
: . 16d7f38d4
o And assign with: *data = 77; OxT6d7Ts8d
4 77
0x70000000 - 0x70000000 + N
(Aside) Heap
e The ‘4’ at the start does some bookkeeping in our heap
structure to tell us how big the allocation was. Data
e The actual data we write an integer to (again we need
4 bytes) could come after the little ‘header’ labeled 4 0x10000000
that does bookkeeping for us. COde

e \We ‘manually’ allocate memory using new

o e.g.int* data =

new 1int;
o And assign with: *data/\= 77 ;

4

77

0x70000000

//
/

/

some new memory.

(i.e. int®)

e So ‘new int returned an address to

e |n order to store an address, we need a
special data type, known as a ‘pointer’

\

\

1000000 + N

Address (in Hex) Value
0x16d738d8
Ox16d7f38d4 Stack
Heap
Data
0x10000000 Code

e \We ‘manually’ allocate memory using new

o e.g.int* data = new int;
o And assign with: *data = 77;

Address (in Hex)

Value

0x16d7f38d8

0x16d7f38d4

4

77

Now before our program terminates,
we’re going to need to delete the
memory ‘manually’ that we have
allocated.

Stack

Heap

Data

0x10000000

Code

e Heap memory is usually meant to be long | | Address (in Hex) Value
lived 0x1607738d8 Stack
o (It gets its own section for that reason) 0x16d713804
4 77
Ox70000\\\0 - 0x70000000 + N
e So we use delete data; to reclaim the Heap
memory in our process. D
» ata
0x10000000

Code

e Heap memory is usually meant to be long Address (in Hex) Value
lived Ox16d773808 Stack
o (It gets its own section for that reason) | | 21%4755%
? 22222777
owoooo\\b\ - 0x70000000 + N
e So we'll use delete data; to reclaim the Heap
memory in our process. Dat
o Now our previous block of memory ata
0x10000000

in the heap can be repurposed.

Code

e Heap memory is usually meant to be long | | Address (in Hex) Value
lived 0x16d7f38d8 St
. . ack
o (It gets its own section for that reason) | | 2x16d7*38¢
o 77
owoooo\\b\ P 0x70000000 + N
e In practice our memory is marked free, Heap
and likely holds the previous contents
Data
0x10000000

Code

(Quick Recap of our Quick Review)

Stack and Heap

Stack and Heap (1/2)

Address (in Hex Value
o Stack ihiace)
_ _ 0x16d7f38d8
o Fast allocations for local variables StaCk
: : 0x16d7f38d4
o memory automatically reclaimed
o stack size is fixed, so smaller amount of space
e Heap
o Used for larger allocations
o Used for long-lived memory
m And we have to manage the heap in an
explicit allocator (or otherwise rely on
infrastructure like a garbage collector to Heap
reclaim memory)
o And dynamic memory allocation is slow. Data
0x10000000 C
ode

Stack

Fast allocations for local variables
memory automatically reclaimed

(@)

(@)

(@)

stack size is fixed, so smaller amount of space

Heap

Used for larger allocations
Used for long-lived memory

(@)

(@)

(@)

And we have to manage the heap in an
explicit allocator (or otherwise rely on
infrastructure like a garbage collector to
reclaim memory)

And dynamic memory allocation is slow.

(next slide)

Address (in Hex)

Value

0x16d7f38d8

0x16d7f38d4

Stack

Heap

Data

0x10000000

Code

(i.e. new or malloc) slow -- or at least slow relative to the stack?

: Wait, why is ‘dynamic memory allocation’

Why is Dynamic Memory Allocation

Considered Slow?

Specifically with Global General Purpose
Heap Allocators?

74

Reason # 1 -- malloc/new are general purpose allocators

void* operator new(std::size_t) _GLIBCXX_THROW (std::bad_alloc)
__attribute_ ((__externally visible));

H 1 void* operator new[](std::size_t) _GLIBCXX_THROW (std::bad_alloc)
1.) The allocator is designed to B e o
15 void operator delete(void*) _GLIBCXX_USE_NOEXCEPT
handle and bOOk keep __attribute_ ((__externally_visible_));
void operator delete[](void*) _GLIBCXX_USE_NOEXCEPT
H H __attribute_ ((__externally visible));
a"ocatlons Of any Slze void* operator new(std::size_t, const std::nothrow_t&) _GLIBCXX_USE_NOEXCEPT
G | __attribute_ ((__externally visible_));
a. enera purpose memory void* operator new[](std::size_t, const std::nothrow_t&) _GLIBCXX_USE_NOEXCEPT
” t d . d t d ‘ ” __attribute_ ((__externally visible));
allocators are designea 1o ao we void operator delete(void*, const std::nothrow t&) GLIBCXX USE NOEXCEPT
’ . : __attribute_ ((__externally visible));
enough for most app|ICatI0nS. void operator delete[](void*, const std::nothrow_t&) _GLIBCXX_USE_NOEXCEPT
] ttribut ((xternally visibl ;
b. That means allocating 1 byte, 72 R R e
// Default placement versions of operator new.
bytes’ 1mb’ or 21gb ShOU|d be inline void* operator new(std::size_t, void* _ p) _GLIBCXX_USE_NOEXCEPT
Supported { return _ p; }
inline void* operator new[](std::size_t, void* _ p) _GLIBCXX_USE_NOEXCEPT
. . f n n « 1
c. Handling such a variety of L return _p;
1 // Default placement versions of operator delete.
scenarios can add a IOt Of inline void operator delete (void*, void*) _GLIBCXX_ USE_NOEXCEPT |
overhead per Ca” to ‘ma”oc’ or ilr:inine void operator delete[](void*, void*) _GLIBCXX_USE_NOEXCEPT f{
1/@5
‘new’ for ‘finding memory’ bl eaenh TerE”

The ‘new’ header file in gcc 75

Reason# 2 - Context Switching and OS finding resources (1/7)

2.) When you allocate memory,
a context switch takes place

a.

This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. Itthen grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

76

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to

executing your program.

ii. Then you context switch
back

User
Code

Our process is executing

User

2.) When you allocate memory, Code
a context switch takes place L

event/system call

a. This means the kernel (which tiggers an ‘exceplor
is running alongside your
program in the operating
system) takes over.
i. It then grants you the
required memory (if you
have have enough) and

then you return to Then the user calls

executing your program. ‘malloc’
ii. Then you context switch

back

User

2.) When you allocate memory, Code
a context switch takes place

| Exception |

L Kernel Code

event/system call >

a. This means the kernel (which tggers an ‘exception
is running alongside your
program in the operating
system) takes over.
i. It then grants you the
required memory (if you

have have enough) and An exception is called (OS level exception
then you return to on a system call) that transfers control to
executing your program. the kernel.

ii. Then you context switch

back Registers saved in user process, perhaps
other processes also run in-between.

User

2.) When you allocate memory, Code
a context switch takes place

L Kernel Code

| Exception |

event/system call

y:
a. This means the kernel (which triggers an ‘exception ﬂ Exception handled by

is running alongside your exception handler
program in the operating
system) takes over.
i. It then grants you the
required memory (if you

h h h : .
ave have enough) and Our Operating System finds
then you return to)
executing your program. some memory that it can return
i. Then you context switch (in increments of a ‘page size’)

back

User

2.) When you allocate memory, Code
a context switch takes place

L Kernel Code

| Exception |

event/system call

a. This means the kernel (which triggers an ‘exception) ﬂ Exception handled by
is running alongside your exception handler
program in the operating
system) takes over.

i. It then grants you the
required memory (if you

have have enough) and Our Operating System returns
then you return to
executing your program. control to the process, restores

ii. Then you context switch registers to our code.
back

User

2.) When you allocate memory, Code | _
.
a context switch takes place oot
xception |

A%
event/system call

a. This means the kernel (which triggers an ‘exception » ﬂ Exception handled by
is running alongside your exception handler
program in the operating
system) takes over.

i. It then grants you the iy
required memory (if you

have have enough) and

then you return to Our program can now

executing your program. proceed_
ii. Then you context switch

back

(Aside) Context Switch Cost

e Note: Anecdotally context switches take the order of 100s-1000s of cycles vs

regular instructions taking 1-100 cycles.
o (You can try using rdtsc() to try to measure clock ticks after an allocation)

83

A Simple Heap Allocator

To understand some of the challenges of
memory allocation

Let’s build an Explicit allocator (rather than Implicit allocators)

THE
Our choice of language often defaults us into an allocation strategy

Explicit Memory Allocator ot
o The application (i.e. you the programmer) is responsible for allocating and PROGRAMMING

freeing memory HANGLAGE
m This is what we do in C with malloc and free
m (or equivalently in C++ with new and delete/delete]]) (
e Implicit Memory Allocator (
o The application(program) allocates, but does not free memory t)
m Agarbage collector instead frees the memory for us. F ams A

m e.g. The Java programming language has different garbage collectors to

help us Java
e Note: More language these days may offer a combination

o (e.g. DLang is implicit by default, but allows you to mark code @nogc and
perform manual memory allocation)

D
e Note: And of course, you could roll your own garbage collector for
C or C++ if you wanted, it’s just not the default

85

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://dlang.org/

Implementation

Building a Memory Allocator

86

#include <stdio.h> // Any other headers we need here
#include <malloc.h> // We bring in the old malloc function

// NOTE: You should remove malloc.h, and not include <stdlib.h> in your final implementation.

mymalloc.c (1/2)

void* p = (void*)malloc(s); // In your solution no calls to malloc should be made!

// Determine how you will request memory :)

e Given in this example is i
13 1] // We we are out of memory
myma”OC.C // if we get NULL back from malloc

. . L }
o You will notice, some of it is printf("malloc %zu bytes\n",s);
filled in. RS

e \We are essentially going to
‘override’ the malloc call ST
with our own ‘mymalloc’, e o O ERSEG)
‘myfree’, ‘mycalloc’, etc.. e

void* mycalloc(size_t nmemb, size_t s){

// We we are out of memory
// if we get NULL back from malloc

¥

printf(“calloc %zu bytes\n",s);

return p;

¥

void myfree(void *ptr){
printf(“Freed some memory\n");

free(ptr);

#include <stdio.h> // Any other headers we need here
#include <malloc.h> // We bring in the old malloc function

// NOTE: You should remove malloc.h, and not include <stdlib.h> in your final implementation.

void* mymalloc(size_t s){

void* p = (void*)malloc(s); // In your solution no calls to malloc should be made!

// Determine how you will request memory :)

e Here’s the blocks of code it
where you can replace pleriasis o N
malloc. ir‘intf(“malloc %2u bytes\n",s);

e Note: I'm calling the ;
original malloc/calloc/free B — T
— butwe'll want to replace il
that with something else! i

e Thus, we need a tool for plopcstidinid- W

¥

extending the heap. printf(“calloc %zu bytes\n",s);

return p;
——

void id *nt+n)L

printf("Freed some memory\n");

free(ptr);

(Aside) mymalloc.h - interpositioning

e You can either use your allocation functions, or try to use some
compile-time or link-time interpositioning technique to replace malloc.

e malloc.h shows how we are defining ‘malloc’ to actually mean
o “Hey compiler, you know that code we wrote with ‘malloc’?”
o “Please replace all malloc’s with mymalloc, so | can test other programs that used
the malloc.h allocator.”

// This header is redefining every call to 'malloc’ to our implementation
"mymalloc’

// Again, this is a simple textual replacement of the code by the preprocessor

#define malloc(size) mymalloc(size)

#define calloc(nmemb, size) mycalloc(nmemb,size)

#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);

void *mycalloc(size_t nmemb, size t size);

89

void myfree(void *ptr);

Ways to request memory for our allocator (on linux) (1/2)

System Calls
e sbrk

o Use internally by allocators to grow or shrink the heap
o This will be handy for implementing our own memory allocator!

® Mmmap
o Creates a new mapping in virtual address space (in page size increments) of calling process.

90

System Calls
e sbrk

o Use internally by allocators to grow or shrink the heap
o This will be handy for implementing our own memory allocator!

® Mmap
o Creates a new mapping in virtual address space (in page size increments) of calling process.

We’'ll be using sbrk for our first allocator -- it's good for our first allocator

91

sbrk system call

Linux Programmer's Manual

e The ‘sbrk’ command is
the SyStem Ca” fOr brk, sbrk - change data segment size
changing the size of the BEESS

heap Segment #include <unistd.h>
o (i.e. how we can extend int brk(void *addr);

the heap) void *sbrk(intptr_t increment);
e Malloc is built on top of

system commands like
sbrk (and mmap)

92

https://man7.org/linux/man-pages/man2/mmap.2.html

1 #include
2 #include

sbrk example (1/4)

int main(){

// Print out the top of the heap for a process.

e Hereisan example of // This is the first byte we can 'grab' to store something in.
. // We pass in '@' as an argument into sbrk.
extending the heap 4 Voidt top = sbrik(e):
byteS printf(%p\n",top);
o Note: sbrk(0) - returns the (/1 neeag & ke
char* bytes = sbrk(4);
address of the top of the printf(%p\n",sbrk(2));
heap

// Set our bytes to some data
bytes[©] ;

bytes[1] = "i’;

bytes[2] D

bytes[3] = '\e';

printf(

return 9;

93

1 #include
2 #include

int main(){

// Print out the top of the heap for a process.

// This is the first byte we can 'grab' to store something in.
// We pass in '@' as an argument into sbrk.

void* top = sbrk(@);

printf(%p\n",top);

// Extend heap 4 bytes

char* bytes =|sbrk(4);

printf(%p\n",sbrk(e));

// Set our bytes to some data

Question to Audience: Should EyﬁesE] ;
ytes -

.] :
we track our allocations and bytes[2] = '\n';
]

why? Or not (and why?) iﬁiiﬁ ("o’

return 9;

1 #include
2 #include

int main(){

// Print out the top of the heap for a process.

// This is the first byte we can 'grab' to store something in.
// We pass in '@' as an argument into sbrk.

void* top = sbrk(@);

printf(%p\n",top);

// Extend heap 4 bytes

char* bytes =|sbrk(4);

printf(%p\n",sbrk(e));

. . // Set our bytes to some a&

Question to Audience: Should EytesE %
c ytes

we track our allocations and bytes[2]

]

why? Or not (and why?) i

We need to keep
; track of this ‘4’
n'; .
"\e'; byte allocation so
we can free our
memory later, and
know to mark ‘4’
bytes as free.

2

For folks answering yes return

2

1 #include
2 #include

int main(){

// Print out the top of the heap for a process.

// This is the first byte we can 'grab' to store something in.
// We pass in '@' as an argument into sbrk.

void* top = sbrk(@);

printf(%p\n",top);

// Extend heap 4 bytes

char* bytes =|sbrk(4);

printf(%p\n",sbrk(e));
// Set our bytes to some @ o
Question to Audience: Should Eyzesg % ; This is a
. ytes 3 ‘ 0
we track our allocations and bytes[2] = "\n'; monotonic
1=\ allocator’. We

why? Or not (and why?) bytes[
never pay any

printf(
For folks answering no return cost to ‘free’
memory

Allocators so far (1/2)

1. malloc/free (C), and new/delete (C++)
a. General purpose global allocators that we can allocate and free memory from

2. alloca

a. Special purpose allocator that allows us to allocate memory on the stack
i. (Memory reclaimed when we leave scope)

3. (heap-based) monotonic allocator
a. An allocator that allocates memory on the heap (perhaps using sbrk).
b. We just allocate -- we never or rarely recycle or reclaim memory to use again, even when
we're done with it.
i. See: https://en.cppreference.com/w/cpp/memory/monotonic_buffer resource (C++17)
ii. Search ‘bump allocator’
1. Again idea is to never free, or maybe free all of the memory at once.

97

https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource

3.

(heap-based) monotonic allocator

For some of you, this might be
the right strategy! The talk is
effectively done for you :)

For the rest of us, this is a useful
strategy to know about, that we
might combine with others.

Let's learn about bookkeeping
now :)

98

https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource

racking Memory (i.e. Bookkeeping)

Allocating with sbrk was easy -- how do we keep track and
free the right amount of memory?

99

How much memory do we free when calling free(p0)? (1/4)

e In order to answer this, we need to do some bookkeeping
e That means creating a data structure to track how much memory we are

using.
o Note that when we allocate memory, we are actually going to allocate a ‘block’ + the
size of the actual data we want to store (and maybe more metadata as well).
o The ‘block’ handles the book keeping

struct block{
size t size; // How many bytes beyond this block have been allocated in the heap
block* next; // Where is the next block in your linked list
int free; // Is this memory free?
int debug; // (optional) Perhaps you can embed other information--remember, you are the boss!

};

100

Key idea: Malloc’ing 4

means ‘4’+sizeof(block)
Sometimes we call this the Il EE EEEEEE

‘header’ (See end of slide Plo
deck for extra slides) p0 = matioc(ey [[]] [[T |s]] | ! 1
blocIsize payload

ereepo) [[[[[[P T T TP] [

struct block{
size t size; // How many bytes beyond this block have been allocated in the heap
block* next; // Where is the next block in your linked list
int free; // Is this memory free?
int debug; // (optional) Perhaps you can embed other information--remember, you are the boss!

};

101

So when we free memory, we look
for the block in a data structure

that holds all of the blocks--and Bl Bl BEEEER
flip a bit to free.

poO
Now what this could mean, is traversing l
through an entire list everytime we want to po =mattoc(d) [| | [| | []] ,?l %J—I

free something!

block size payload

What strategies do we otherwise have?
2 freepo) | | | [[[| | | HEEE

/

struct block{

size t size; // How many bytes be
block* next; // Where i e next block in your linked list

int free; s this memory free?

int debug; // (optional) Perhaps you can embed other information--remember, you are the boss!

};

is block have been allocated in the heap

102

(Quick note)

‘block size’ in the visualization is

actually bigger than the 1-byte il BN EEEEEE
box represented.

plO
o (For convenience, it is po =malloc(d) | | | | | [[| | |s] | | ! ||
represented as one box in T

some of the figures) blocksize payload

ereepo) | | | | | [[]| HEEE

/

struct block{

size t size; // How many bytes be
block* next; // Where i
int free;

is block have been allocated in the heap
e next block in your linked list

s this memory free?

int debug; // (optional) Perhaps you can embed other information--remember, you are the boss!

};

103

Keeping Track of Memory

Data Structures and strategies

Kkeepingtrack-ofrmemeory | Strategy 1 - monotonic allocator (1/6)

e Simply allocate memory as you need
o No need for a block structure even

105

e Simply allocate memory as you need
o No need for a block structure even
m char* A = malloc(sizeof(char));

106

e Simply allocate memory as you need
o No need for a block structure even
m char* A = malloc(sizeof(char));
m char* B = malloc(sizeof(char));

107

e Simply allocate memory as you need
o No need for a block structure even
m char* A = malloc(sizeof(char));
m char* B = malloc(sizeof(char));

108

Simply allocate memory as you need
o No need for a block structure even
m char* A = malloc(sizeof(char));
m char* B = malloc(sizeof(char));

m short* s = malloc(sizeof(short);

Note: we need to take into consideration
fragmentation (coming up) and alignment,
thus the gap.

[]

109

https://en.wikipedia.org/wiki/Data_structure_alignment#Hardware_significance_of_alignment_requirements

e Simply allocate memory as you need
o No need for a block structure even
m char* A = malloc(sizeof(char));
m char* B = malloc(sizeof(char));
m char* C = malloc(sizeof(char));
m short* s = malloc(sizeof(short);

e So justto be clear, we are not keeping track of anything here -- our strategy is
keep track of nothing.

110

Keeping track of memory | Strategy 2 - Implicit List

e An implicit list keeps track of all of the blocks using length of allocation in the

block structure
o We have this ‘emergent data structure’ that forms a singly linked list for all of the memory that
we have handed out.
m Prior to doing a call to sbrk to extend the heap (or mmap), we can then check if a ‘free’
block (marked free in the struct block) and reuse that block.
m When we ‘free’ memory, we simply retrieve the memory address of the data, subtract the
block size, and mark in that block as free.

e et

S 3 8 2

111

Keeping track of memory | Strategy 3 - Explicit List

e An explicit list maintains a list that only points to free blocks
o What's the trade-off?
m This could make allocation faster--now we iterate through our ‘explicit list’ that points to
blocks of memory that are free of a certain size.

112

Keeping track of memory | Strategy 4 - Pool

e Maintain a separate free list for different size classes
o (i.e. have either multiple linked lists, either explicit or implicit, keeping track of memory)
o Perhaps size your pools to reasonable values -- all powers of 2
m Or even better -- sizes of objects in your game/application

Allocations of
size 1

Allocations of
size 4

Allocations of
size 8

Allocations of
size 2

etc.

113

Keeping track of memory | Strategy 5 - Tree

Maintain a structure that is sorted by
size
o Some heap, or balanced tree structure

o (Red-black tree shown and link to the
bottom-right)

42 Bytes

https://www.gingerbill.orag/article/2021/11/30/memory-allocation-

strategies-005/#red-black-tree-approach

114

https://www.gingerbill.org/article/2021/11/30/memory-allocation-strategies-005/#red-black-tree-approach
https://www.gingerbill.org/article/2021/11/30/memory-allocation-strategies-005/#red-black-tree-approach

Okay, we have a general idea of our storage
mechanism (i.e. data structure) to bookkeep
memory and also find free memory.

What further strategies do we have to
allocate/free memory during run-time?

Revisit Naive Strategy -

1 #include

monotonic allocator 2 #inclide

int main(){

// Print out the top of the heap for a process.

e Allocate every time we // This is the first byte we can 'grab' to store something in.
. // We pass in '@' as an argument into sbrk.
need memory (monotonlc void* top = sbrk(e);
allocator) P AT
o (A|SO see term bLJ_IT]Q // Extend heap 4 bytes
char* bytes = sbrk(4);
allocator) printf(%p\n",sbrk(2));
¢ I InStead Want tO ShOW // Set our bytes to some data
you how to reuse blocks bytesio] = b
bytes[1] = ;
that have been previously Bytesi el
. bytes[3] = '\@';
freed after malloc’ing printf(

o (See next slide!)
return 9;

116

https://github.com/fitzgen/bumpalo
https://github.com/fitzgen/bumpalo

Implicit List: How to find/choose a free block (1/4)

e First fit strategy (For a first allocator, | recommend this for learning)
o Search from beginning of list
m Choose first free block that fits
o Takes linear time: O(number of allocated and freed blocks)

117

e First fit strategy
o Search from beginning of list
m Choose first free block that fits
o Takes linear time: O(number of allocated and freed blocks)

118

e First fit strategy
o Search from beginning of list
m Choose first free block that fits
o Takes linear time: O(number of allocated and freed blocks)

- | found two
blocks here!

119

e First fit strategy
o Search from beginning of list
m Choose first free block that fits
o Takes linear time: O(number of allocated and freed blocks)

- malloc(1)
works here

120

Implicit List: How to find/choose a free block (1/4)

e Next-fit strategy

o Search from where you left off from your previous search
m Choose first free block that fits

121

e Next-fit strategy

o Search from where you left off from your previous search
m Choose first free block that fits

122

e Next-fit strategy
o Search from where you left off from your previous search
m Choose first free block that fits

malloc(1)
works here
(remember
we need two
blocks--one

to store size)

123

e Next-fit strategy
o Search from where you left off from your previous search
m Choose first free block that fits
o Takes linear time: O(number of allocated and freed blocks)
m May be better, avoids re-scanning unhelpful blocks if you are doing many similar
allocations malloc(1)

m Could make fragmentation worse though! works here
(remember

we need two
blocks--one

to store size)

124

Implicit List: How to find/choose a free block (1/4)

e Best-fit strategy
o Scan for the block that fits best
m i.e. fewest bytes left over
o Keeps fragmentation small and improves memory utilization
o Will typically run slower than first-fit (longer scan for optimal block)

Start here
for

malloc(1)

125

e Best-fit strategy
o Scan for the block that fits best
m i.e. fewest bytes left over
o Keeps fragmentation small and improves memory utilization
o Will typically run slower than first-fit (longer scan for optimal block)

Start here ma”oc('])

for works here
malloc(1)

126

e Best-fit strategy
o Scan for the block that fits best
m i.e. fewest bytes left over
o Keeps fragmentation small and improves memory utilization
o Will typically run slower than first-fit (longer scan for optimal block)

malloc(1)
works better
here (less
fragmentation)

Start here ma”oc('])
for works here
malloc(1)

127

Start here
for

malloc(1)

malloc(1)
works here

Observe that if allocated here instead
of at the end, we would have ‘1’
wasted block (only perhaps available
for the header)

This is known as fragmentation, and
it's a challenge with memory
allocators

works better
here (less
fragmentation)

What is Fragmentation?

A challenge with memory allocation

It's good to do
relatively often the
longer you own
your machine and
the more files you
store.

: Who has run a disk defragmentor?

™ Disk Defragmenter
Eie Action View Help

m @

| Yolume Sesgion Status File System Capacy Free Space % Free Space

Defragmenting. ..

Estmated dsk usage before defragmentation:

Estimated dsk usage after defragmentation:

T

M Fragmented files [Cortiguous files [l Urenovable fles [Free space

(C:) Defragmenting... 1% Compacting Files (8 |

ISO

Fragmentation example visualization (1/2)

1 Pl = malloc(4)

2 P2 = malloc(5)

3 | p3 = malloc(6)

4 free (p2)

3 p4 = malloc(2)

131

|deally we have
no empty blocks
ever®

We only want to
use what we
need.

These ‘gaps’ are
sometimes a
result of what is
called
fragmentation.

Pl = malloc(4)

~] =

P2 = malloc(5)

p3 = malloc(6)

free (p2) n

o] (2] [

P4 = malloc(2)

[l (1

*observer we malloc 17 total bytes at most, so that's our upper bound. At any given time the maximum we have
is ‘15’ bytes, but we always have some extra empty blocks.

132

Excessive Fragmentation = Poor memory utilization (1/2)

e Two types of fragmentation

a. Internal Fragmentation
m e.g. we allocate structures smaller
than our block size of X bytes (where
X is architecture dependent)

e (e.g. We allocate 1 character
which is one byte, but our
blocks are given out 8 bytes at
a time)

b. External Fragmentation
m We have enough blocks (i.e. we don'’t
need to extend the heap), but the
allocations are not all contiguous

e --see on the right that we

cannot malloc(4) for instance.

Block

\

J

Internal
fragmentation

Payload

Internal
fragmentation

pl = malloc(4)
P2 = malloc(s)
P3 = malloc(6)
free (p2)

pd4 = malloc(2)

HNEEEEEEEEEEEEEEE

HNEEEEEEEEEEEEEEN

LI 1 [[| |

ENENEEEEE =N

||]|||||

Note: It is hard up to this point to
know fragmentation will occur based
on the order of mallocs and frees.

We cannot always predict the future.

pl = malloc(4)
S R aa &
p3 = malloc(6)
free (p2)

pd4 = malloc(2)

[T TTTTTT]

HNEEEEEEEEEEEEEEN

LI 1 [[| |

ENENEEEEE =N

T ()

Splitting and Coalescing (i.e. Combining
Blocks)

To help avoid fragmentation/use finite
resources more efficiently

135

Implicit List: How to allocate a free block? (Possible to split) (1/2)

e Depending on our strategy
o We could allocate to the block found
m i.e. we set a pointer to that block and size
s We may want to also split that block if there is room to do so and leave some
reasonable free space for another allocation (See example below)

5 3 J .

136

e Depending on our strategy
o We could allocate to the block found
m i.e. we set a pointer to that block and size
m We may want to also split that block if there is room to do so and leave some
reasonable free space for another allocation (See example below)

allocate: ‘p’' here that is 4 bytes + header

Implicit List: How to free a block and combine? (1/3)

e Simply free a block by setting the free bit in the header

o This could lead to fragmentation however!

138

Implicit List: How to free a block and combine? (2/3)

e Simply free a block by setting the free bit in the header

o This could lead to fragmentation however!

Let’s free p now, and now below
‘P’ is logically free.

139

Implicit List: How to free a block and combine? (3/3)

Could combine (coalesce)
adjacent free blocks into a
bigger block of ‘8’

e Simply free a block by setting the free bit in t

o This could lead to fragmentation however!

140

Global and Local Allocators

(Approaching the ‘finale’ portion of the talk)

CPU

Global versus Local allocators (1/10)

So we’ve got a way to grab memory
e \We have a way to track memory
And we have a way to navigate memory

allocations to fit in new memory

o First-fit, next-fit, best-fit

e \We've been assuming we get all of the

Main Memory

memory as shown on the right in our

allocator

e This is how ‘malloc’ implementations

operate

CPU

There are some issues that arise with a

global allocator
o We have a lot of memory to manage -- so we

might get fragmentation

o (and diffusion -- which is lots of allocations left

all over memory)

Main Memory

There are some issues that arise with a
global allocator

(@)

(@)

We have a lot of memory to manage -- so we
might get fragmentation

(and diffusion -- which is lots of allocations left
all over memory)

CPU

Main Memory

There are some issues that arise with a

global allocator
o We have a lot of memory to manage -- so we
might get fragmentation
o We might also have issues of ‘contention’ with
multithreaded programs
m So let’'s imagine two threads are calling
on ‘malloc’ to allocate
m Essentially we need a global lock
e (another reason heap memory
allocation slows down)

CPU

Main Memory

There are some issues that arise with a
global allocator

(@)

We have a lot of memory to manage -- so we
might get fragmentation
We might also have issues of ‘contention’ with
multithreaded programs

m So let’s imagine two threads are calling

on ‘malloc’ to allocate
m Essentially we need a global lock
e (another reason heap memory
allocation slows down)

O ced (0 PU

Main Memory

There are some issues that arise with a
global allocator

(@)

We have a lot of memory to manage -- so we
might get fragmentation
We might also have issues of ‘contention’ with
multithreaded programs

m So let’'s imagine two threads are calling

on ‘malloc’ to allocate
m Essentially we need a global lock
e (another reason heap memory
allocation slows down)

And we haven’t touched on locality yet -- but
because we’ve guided our program to look
everywhere for memory, this has implications
on cache performance.

CPU

Main Memory

One strategy is to use ‘local allocators’
that are given a few pages (or some
other fixed allocation size that you
choose)

CPU

Main Memory

One strategy is to use ‘local allocators’
that are given a few pages (or some
other fixed allocation size that you
choose)

CPU

Main Memory

| Region 1

1 Region 2

One strategy is to use ‘local allocators’
that are given a few pages (or some
other fixed allocation size that you

choose)
o Now within each of these regions, you might
have different allocation strategies themselves!
m eg.
e Region 1 is a pool allocator with
certain fixed sizes
e Region 2 acts as a general purpose
allocator
o And if Region 2 runs out of
memory, it could fall back to
‘malloc’ for instance

CPU

Main Memory

| Region 1

1 Region 2

Kind of neat if we size ‘Region 1’ to

match your L1/L2/L3/L4 cache size for

some subsystem that you're utilizing.

Kind of neat if ‘Region 1’ and ‘Region 2’

can be used safely from separate threads
o i.e. we can avoid some contention

Kind of neat if you can fit one subsystem
(graphics, Al, physics) in a specific region

CPU

Main Memory

| Region 1

Cache

| Region 1

1 Region 2

1 // @file arena.hpp
2 class LocalArenaf

3 private:

4 // Choose a data structure to manage your data
b // — ImplicitList* myImplicitList;

6 // — ExplicitList* myExplicitList;

7/ // - ListOfLists* myPoolAllocator

8

Here is some 9 // *Maybex one std::mutex if your Local Arena is shared.
‘example’ of how you [

i 12 /* Create a region or 'arena' of memory x/
mlght structure an 13 LocalArena(void* startOfRegion, voidx endOfRegion){ /* .. %/ }

arena allocator 14 . _

15 /* Find space in your arena for the # of bytes requested
16 */

17 voidkx Allocate(std::size_t bytes);

P 19 // Very simple allocation functions as an example for pool allocator
(ThIS 1S purely 20 // voidx Allocate8Bytes();

slideware, but 21 // voidx AllocateléBytes();

22 // voidx Allocate32Bytes();

probably a reasonable P&

. . 24 /* Pass in an address, and mark free in Local Arena

Interface tO bUIld Off 25 Note: Optionally 'zero' out memory or do other bookkeeping.

Of) 26 */
27 void DeAllocate(void* address){ }

29 /* reclaim all memory in just this arena %/
30 void Release(){ }

Some more ldeas and Best Practices

153

mmap

Linux Programmer's Manual MMAP(2)

e Qur strategy of using ‘sbrk’ to
allocate works

mmap, munmap - map or unmap files or devices into memory

. . , SYNOPSIS.
([But mak|ng Ca”S to Sbrk #include <sys/mman.h>
constantly is performing many e o § b s <06 pe 165 g,

int munmap(void *addr, size_t length);
SyStemS Ca”S See NOTES for information on feature test macro requirements.

e Instead, we typically allocate DESCRIPTION

mmap() creates a new mapping in the virtual address space of the

in ‘page size’ increments and e B e o e e e i e
can use mmap to ask for

mapping (which must be greater than 0).

If addr is NULL, then the kernel chooses the address at which to

i create the mapping; this is the most portable method of creating a

Iarger allocatlons' new mapping. If addr is not NULL, then the kernel takes it as a

; ; hint about where to place the mapping; on Linux, the mapping will

© sbrk again mlght be used for be created at a nearby page boundary. The address of the new map-
small heap allocations in a ping is returned as the result of the call.

global allocator
154

Potentially Ideal ‘"Heap’ Memory Management

e Only one large heap allocation (at the start of the program) in order avoid
system calls context switches.

O i.e. allocate one big chunk (e.g. malloc(100000000) ; or new data[10000000] ;)
o Note: This is essentially what we do per process for stack memory -- just allocate once.

e Once we have our large block of memory, you can then divide it up as needed
and perform bookkeeping

O Again, take advantage of your custom memory allocator to handle when a programmer asks
for memory.

155

A few more ideas

e Consider trying to avoid dynamic memory allocations altogether!
o e.g. static strings allocated in static portion of memory
o e.g. create static containers
o e.g. small string allocations (small string allocations get stored on stack
m i.e. think about where you can put memory

156

Conclusion and Further Resources

Wrapping up what we'’ve learned

157

Summary on Memory Allocation

e \We should have a good understanding of stack and heap
o And the tradeoffs when allocating in each segment of memory in our process

e \We've discussed motivation on why we might want to move away from using

a general purpose heap allocator (e.g. malloc)
o We've looked at some different memory allocator strategies
o We've looked at some allocator designs
m alloca
m monotonic
m various dynamic memory allocators using ‘sbrk’
m LocalArena allocator

158

The Next 3 Resources to Learn More (1/3)

(Listed in the order | think they should be read/watched)

1. Computer Systems: A Programmer’s Perspective (Wonderful book)
a. Book used in Carnegie Mellon Course on Systems
2. Jason Gregory
a. Game Engine Architecture
b. https://www.gameenginebook.com/ (The book is wonderfull)
3. John Lakos Arena allocators talk
a. https://www.youtube.com/watch?v=xUtndRUJHX8&t=1s

159

https://www.cs.cmu.edu/~213/
https://www.gameenginebook.com/
https://www.youtube.com/watch?v=xUtndRUJHX8&t=1s

Resources (2/3)

e Jason Gregory’s book “Game Engine Architecture”

is where | learned a lot of this stuff a few years ago
o https://www.gameenginebook.com/
e (And Jason has presented at an iteration of

handmade -- how | originally found out about
Handmade Seattle!)

S
S
=
-
-
-

. -
e Tars R —ar
\

HandmadeCon 2016 - Large-scale Systems

Sery (Fabd
| (- stiy)
Architecture
28K views * 5 years ago
~{ L t% Molly Rocket

Jason Gregory (https://twitter.com/jqgregory) of Naughty Dog discus:

FIMEY So You Might Be Iterating Like Crazy as It Turns... 12 m

160

https://www.gameenginebook.com/

Resources (3/3)

Ryan Fleury blog post

o https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator (Thank you for sending this Abner)
Emery Bergers paper on custom memory allocators vs malloc (2002)

o “On reconsidering memory management)
Emery Berger paper on Hoard
https://en.wikipedia.org/wiki/Hoard _memory_allocator
More overview on different types of memory allocators

o https://www.openmp.org/spec-html/5.0/openmpsuS3.html
See other allocation strategies

o Slab allocator (GNU libc)

o Buddy system (linux kernel)

Googles allocator tcmalloc [github]
jemalloc [https://jemalloc.net/] [github] [Video]

CppCon 2017: Pablo Halpern “Allocators: The Good Parts”

161

https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator
https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
https://en.wikipedia.org/wiki/Hoard_memory_allocator
https://www.openmp.org/spec-html/5.0/openmpsu53.html
https://github.com/google/tcmalloc
https://jemalloc.net/
https://github.com/jemalloc
https://www.youtube.com/watch?v=RcWp5vwGlYU
https://www.youtube.com/watch?v=v3dz-AKOVL8

Small Aside

e Of the two books in my ‘Building
Game Engines’ -- they are from
two speakers who've presented in

the Handmade community
o Jason Gregory -- Game Engine

Resources

There will be no required textbook for this
course. However, these resources are

recommended.
Architecture
o Robert Nystrom -- Game Programming » (Strongly Recommended) Game Engine
Patterns Architecture
e (o buy the books if you are able, (Free) Game Programming Patterns

they’re worth every dollar to * (Free) C++ Tutorial

support the authors.

162

S November 16-18th, 2022

Independent

- you!

Conference

Introduction to Memory Allocation:
Design and Implementation

Social: @MichaelShah 17:00-18:00, Wed, 16th November 2022
Web : mshah.io
Courses: courses.mshah.io https://handmade-seattle.com/

YouTube: . : :
W . voutube . com/c /MikeShah 60 minutes | Introductory/Intermediate Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
https://handmade-seattle.com/

Extras and Notes

