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Goal(s) for today
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What you’re going to learn

● For our audience
○ Learn about memory allocation
○ Understand how we would implement a memory allocator from scratch
○ Look at different types of allocators
○ Look at the design of some of the more popular allocators

● The target experience level for this talk is probably more beginner level
○ I think beginners will get a lot out of the examples and resources in one place
○ I hope this talk encourages intermediate users to think and try building an allocator

■ (This is the handmade community after all, I assume folks will want to build at least a 
simple implementation at some point :) )

○ I think experts will have strong opinions already on this topic already
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Your Tour Guide for Today
by Mike Shah (he/him)

● Associate Teaching Professor at Northeastern University in 
Boston, Massachusetts. 

○ I teach courses in computer systems, computer graphics, and game 
engine development.

○ My research in program analysis is related to performance building 
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++, 
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything 
in computer science under the domain of computer graphics, 
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io 
● More online training coming at courses.mshah.io 5
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Code for the talk

● Located here: 
https://github.com/MikeShah/Talks/tree/main/2022_Handmade_Seattle 
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Abstract

Has anyone told you that memory allocation is too slow? Do your colleagues 
*shutter* when you say malloc? Is malloc actually slow? How would we 
know if allocation is too slow? In this talk I will provide an introduction to 
stack and heap based memory allocation strategies and trade-offs. We'll 
understand the difference between stack and heap based memory, and then 
move on to different implementations of stack and heap based allocators 
and where they might be used. Throughout the talk, I will also show you how 
to build a simple heap memory allocator to demonstrate by example some of 
the design decisions that you have to make.

The abstract that you read and enticed 
you to join me is here!
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Prerequisite Knowledge for this Presentation
With a few links so you can get up to speed if needed

Note: I’m going to flip through these quite fast -- our audience in attendance is 
likely well versed, but for you folks in the future watching this I hope this is helpful.
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Prereq 1/4 - What is a raw pointer?

9

42

0xf8888888

0xf8888888

0xf8888884

int x = 42;

(int)

int* px = &x;

(pointer to 
integer)

● If this picture makes sense 
to you, and you can explain 
in your own words what a 
pointer is -- let’s proceed!

● Don’t have the prerequisite? 
Search on YouTube Learn and 
understand (almost) everything 
about the fundamentals of C++ 
pointers in 96 minutes

https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw


Prereq 2/4 - There are multiple types of physical memory

● It’s useful to understand there’s a memory 
hierarchy, with different types of memory, 

○ and ‘the why’ for the different layers (locality) 
and how that improves performance we have it 
for performance

● It will be useful to know a little bit about 
how virtual memory [wiki] works

○ And why virtual memory allows programmers 
to ‘think’ think about memory as a contiguous 
segment.

https://en.wikipedia.org/wiki/Memory_hierarchy
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Prereq 3/4  I’ll assume you’ve used malloc/free found in<stdlib.h> or <malloc.h>

● void* malloc(size_t size);
○ On Success Returns a pointer to a memory block of at least size 

bytes
■ For x86 this memory is aligned to 8-byte boundaries
■ For x86-64 this memory is aligned to 16-byte boundaries

○ A size of 0 returns NULL
○ Unsuccessful allocation: returns NULL(0)

● void free(void *p);
○ Reclaims memory allocated by malloc, calloc, or realloc.

■ (Returns the block pointed at by p to pool of available 
memory)

○ p must come from previous call to malloc (or realloc)
■ Note: Never use free with delete (used in C++), these are 

different allocators!
● void* calloc(size_t nmemb, size_t size);

○ Similar to malloc, but initializes the allocated block to zero.
● void* realloc(void* ptr, size_t size);

○ Changes size of previously allocated block, contents of new block 
unchanged
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Prereq 4/4  I’ll assume you’ve used malloc/free found in<stdlib.h> or <malloc.h>

● void* malloc(size_t size);
○ On Success Returns a pointer to a memory block of at least size 

bytes
■ For x86 this memory is aligned to 8-byte boundaries
■ For x86-64 this memory is aligned to 16-byte boundaries

○ A size of 0 returns NULL
○ Unsuccessful allocation: returns NULL(0)

● void free(void *p);
○ Reclaims memory allocated by malloc, calloc, or realloc.

■ (Returns the block pointed at by p to pool of available 
memory)

○ p must come from previous call to malloc (or realloc)
■ Note: Never use free with delete (used in C++), these are 

different allocators!
● void* calloc(size_t nmemb, size_t size);

○ Similar to malloc, but initializes the allocated block to zero.
● void* realloc(void* ptr, size_t size);

○ Changes size of previously allocated block, contents of new block 
unchanged

12

Most example code will just use plain C or 
C++, and you can translate to whatever 
language you like.

Note: Sometimes I’ll use ‘malloc’ or ‘new’ 
depending on what’s more convenient or 
clear but the idea is interchangeable



One last note -- examples are often graphics/games (1/2)

● Most of my examples will be slanted towards 3D graphics/game programming
○ My apologies and I take no offense if you don’t like or play video games!
○ Most of the material from this presentation should be able to be applied to other industries 

(especially where memory allocation matters!)
○  e.g. low latency trading applications, computational biology, etc.

● Also, I’m going to break every *good* powerpoint rule about the amount of 
text on a slide that is appropriate. 

○ Why? This is somewhat my style, but I personally like having slides where I can remember 
what the speaker was talking about.
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One last note -- examples are often graphics/games (2/2)

● Most of my examples will be slanted towards 3D graphics/game programming
● My apologies and I take no offense if you don’t like or play video games.
● Most of the material from this presentation should be able to be applied to 

other industries (especially where memory allocation matters!)
○  e.g. low latency trading applications, computational biology, etc.

14

Alright, let’s talk 
about memory 

allocators!



Memory Allocators
Why do we care? What are the Benefits?
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 Performance is the currency 
of computing.
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“Performance is the currency 
of computing. You can often 
“buy” needed properties [of 
software] with performance” - 
Charles Leiserson

https://en.wikipedia.org/wiki/Charles_E._Leiserson


1. Performance

18

● Pragmatically, better performance 
means you can do more, or more 
interesting computation elsewhere 
with your resources.

○ Often this means better ‘something’ 
which is often:

■ Graphics
■ AI
■ More precise physics
■ Gameplay
■ More battery life
■ etc.

● So when creating a memory 
allocator we’ll achieve 
performance by thinking about 
things like ‘locality’ and 
‘contention’

https://www.3dmark.com/

https://www.3dmark.com/


2. Safety

19

● Memory allocators can 
provide a layer of abstraction 
for safety

○ https://news.ycombinator.com/it
em?id=33553668

https://media.defense.gov/2022/Nov/10/2003112742/-1/
-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://news.ycombinator.com/item?id=33553668
https://news.ycombinator.com/item?id=33553668
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF


3. Economics
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● Better utilization of memory, 
less time spent on cpus, and 
lower costs

● (We can probably quantify 
this by measuring how well 
our allocators prevent or 
reduce bugs and save 
engineers time)

https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowerc
ase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all

https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhB
EzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds

https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhBEzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds
https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhBEzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds


Should I still write my own allocator? (1/2)

● A simple one (which also might be the right one) at the least will give you an 
appreciation I think of memory.

○ You will have to think about trade-offs (which is what different allocators offer) which is a good 
thing.

○ For newer programmers (especially when using purely C) I think it may also give you a ‘new 
mental model’ 

■ C to me is a ‘data layout language’
● We’re just accessing (reading/writing) ‘bytes’ from a giant array of memory. 
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Should I still write my own allocator? (2/2)

● A simple one (which also might be the right one) at the least will give you an 
appreciation I think of memory.

○ You will have to think about trade-offs (which is what different allocators offer) which is a good 
thing.

○ For newer programmers (especially when using purely C) I think it may also give you a ‘new 
mental model’ 

■ C to me is a ‘data layout language’
● We’re just accessing (reading/writing) ‘bytes’ from a giant array of memory. 

22

To the handmade community
- I think we just like to know how things work

- Sometimes it’s the right thing to do
- i.e. build a tool/library that solves your exact 

problem given your input.
- But importantly, it helps us innovate later.
- And as I said, it may give you another way to *think* 

about computer science, abstraction, and models of 
computation

- (psst...and it’s fun!)



Why should you not write an allocator?

● You don’t have the budget (time & money) to spend on this
○ Creating an allocator requires some amount of thinking and design before starting
○ It’s possible that a new allocator introduces complexity that is not needed in your project 

beyond what well purposed global allocators (e.g. malloc or new) offer.
● You don’t really need better performance beyond what a general allocator 

(e.g. ‘malloc’ in C or ‘new’ in C++) provide.
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(Quick Review)

Hardware -- Our “Working Memory”
(Also called ‘main memory’ or specifically DRAM - Dynamic Random Access Memory)

24



We have many types of physical memory

● The goal of memory is to store ‘data’
○ The duration of that storage could vary depending on 

the storage medium
■ (e.g. a hard drive or cloud storage should store 

information indefinitely)
● (Aside: As an expert, you’re probably thinking 

more about the mediums, allocators, allocation 
size, where the memory lives, data access 
patterns, data lifetime and various ‘misses’ that 
can occur in different caches.)
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Programmers View of working (or ‘main’) memory (1/3)

● So roughly speaking we have a 
contiguous block of memory that 
looks something like this.

Address (in Hex) Value
0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000
26



Programmers View of working (or ‘main’) memory (2/3)

● So roughly speaking we have a 
contiguous block of memory that 
looks something like this.

● When we create a variable, a 
certain amount of that storage is 
allocated for that variable.

Address (in Hex) Value
0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000
27



Address (in Hex) Value
0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000

Programmers View of working (or ‘main’) memory (3/3)

● So roughly speaking we have a 
contiguous block of memory that 
looks something like this.

● When we create a variable, a 
certain amount of that storage is 
allocated for that variable.

○ for example
■ int x = 42;
■ (int is usually 4 bytes, 

thus 4 bytes taken in 
the illustration where 1 
box = 1 byte of memory)

42

28



Operating System View of Processes (1/3)

● Now keep in mind we have many 
programs running at once

○ So per process our operating system 
has given some memory allocated to 
each process.

2929

Address (in Hex) Value
0x10000000 

+ N bytes
...

...

...

...

...

...

...

...

...

...

0x10000000



Operating System View of Processes (2/3)

● Now keep in mind we have many 
programs running at once

○ So per process our operating system 
has given some memory allocated to 
each process.

■ Here are two processes for 
example

Address (in Hex) Value
0x20000000 + M

...

...

0x20000000

...

...

...

...

0x10000000 + N

...

...

0x10000000
30

Process 
B

Process 
A



Operating System View of Processes (3/3)

● Now keep in mind we have many 
programs running at once

○ So per process our operating system 
has given some memory allocated to 
each process.

■ Here are two processes for 
example

○ Let’s focus on just one process and 
zoom in a little bit on the memory in 
that single process

Address (in Hex) Value
0x20000000 + M

...

...

0x20000000

...

...

...

...

0x10000000 + N

...

...

0x10000000
31

Process 
B

Process 
A



(Quick Review)

Segments of a Running 
Process

32

Address (in Hex) Value
0x10000000 + N

...

...

...

...

...

...

...

...

...

0x10000000

Process 
A



A Single Processes Memory Segments (1/2)

● A process (i.e. a program running on your 
program) is organized into a few segments of 
memory

Address (in Hex) Value
0x10000000 + N

...

...

...

...

...

...

...

...

...

0x10000000
33

Process 
A



A Single Processes Memory Segments (2/2)

● A process (i.e. a program running on your 
program) is organized into a few segments of 
memory

○ (Read from bottom to top)
■ code (or .text) is where our code is
■ data (initialized and uninitialized data stored in 

an object file)
■ heap for dynamically allocated memory
■ stack for our ‘temporary’ memory
■ (Aside: There may be many other segments as 

well -- use otool or objdump to see other 
sections like debug, exception table, etc.)

Address (in Hex) Value
0x10000000 + N

...

...

...

...

...

...

...

...

...

0x10000000
34

Stack

Code
Data
Heap



(Aside) From a Code Standpoint

● A process on an 
operating system is 
just a ‘struct’

○ Observer there’s a 
pointer to the stack

○ Each process also 
gets a ‘page table’ 
(page definition 
useful later) for heap 
allocated memory

35

https://github.com/jeffallen/xv6/blob/master/proc.h

Stack

Code
Data
Heap

https://github.com/jeffallen/xv6/blob/master/proc.h


Memory Allocation

36

Stack

Code
Data
Heap



Memory Allocation
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Stack

Code
Data
Heap

● In order to understand the different ‘segments’ of memory, 
let’s take a look at ‘stack’ and ‘heap’ memory.



A Process and its stack memory (1/5)
Address (in Hex) Value

0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
38

Stack

Code
Data
Heap



A Process and its stack memory (2/5)

● Executing this line, we’ll allocate on the 
‘stack’ space for x.

○ x stores the value ‘42’

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
39

Stack

Code
Data
Heap



A Process and its stack memory (3/5)

● Executing this line, we’ll allocate on the 
‘stack’ space for x.

○ x stores the value ‘42’

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
40

Stack

Code
Data
Heap

42



A Process and its stack memory (4/5)

● And we can use ‘&’ operator to retrieve that 
actual stack address!

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
41

Stack

Code
Data
Heap

42



A Process and its stack memory (5/5)

● And we can use ‘&’ operator to retrieve that 
actual stack address!

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
42

Stack

Code
Data
Heap

42



Stack Allocation With Multiple Variables (1/4)

● Here’s another example showing what 
happens when you allocate multiple 
variables.

○ The stack grows downward in the order of the 
allocations.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
43

Stack

Code
Data
Heap



Stack Allocation With Multiple Variables (2/4)

● Here’s another example showing what 
happens when you allocate multiple 
variables.

○ The stack grows downward in the order of the 
allocations.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
44

Stack

Code
Data
Heap

(x) 42



Stack Allocation With Multiple Variables (3/4)

● Here’s another example showing what 
happens when you allocate multiple 
variables.

○ The stack grows downward in the order of the 
allocations.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
45

Stack

Code
Data
Heap

(x) 42
(y) 42



Stack Allocation With Multiple Variables (4/4)

● Observe the memory addresses growing 
downward

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
46

Stack

Code
Data
Heap

(x) 42
(y) 42



Automatic Memory Management -- Local Variables Popped off stack (1/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’ 

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the 

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
47

Stack

Code
Data
Heap

(x) 42
(y) 42



Automatic Memory Management -- Local Variables Popped off stack (2/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’ 

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the 

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
48

Stack

Code
Data
Heap

(x) 42
(y) 42

Stack Pointer



Automatic Memory Management -- Local Variables Popped off stack (3/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’ 

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the 

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
49

Stack

Code
Data
Heap

(x) 42
???Stack Pointer



Automatic Memory Management -- Local Variables Popped off stack (4/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’ 

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the 

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
50

Stack

Code
Data
Heap

???
???

Stack Pointer



Automatic Memory Management -- Local Variables Popped off stack (5/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’ 

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the 

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
51

Stack

Code
Data
Heap

???
???

Stack PointerSo at this point:
● We understand that stack memory is automatically 

managed for us
○ Memory is placed on the stack
○ Stack allocated memory will be reclaimed at the end 

of its block scope
● Pretty simple model!

○ (And for performance working with memory on the 
stack is fast!)



Automatic Memory Management -- Local Variables Popped off stack (4/5)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
52

Stack

Code
Data
Heap

???
???

Quick Note: We can use 
‘alloca’ to also explicitly 
allocate on the stack as well.

‘alloca’ would be our first 
example a memory allocator 
-- this one with a special 
purpose to allocate memory 
on the stack



Question for Audience: (1/2)
Address (in Hex) Value

0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
53

Stack

Code
Data
Heap

buffer....
How do folks feel about this huge memory 
allocation on the stack? 

*Hint* which way does stack grow (in our example)?



Question for Audience: (2/2)
Address (in Hex) Value

0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
54

Stack

Code
Data
Heap

buffer....

Answer: Our stack is going to overflow -- 
overwriting other segments of memory -- this 
is bad.

Our stack is a ‘fixed size’



Audience Poll: 
How much data 

do you see here?

a.) A lot (More 
than 7MB)
b.) Very little

55

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

https://youtu.be/TMorJX3Nj6U?t=5255


Audience Poll: 
How much data 

do you see here?

a.) A lot (More 
than 7mb)
b.) Very little

56

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

Humor me here -- there’s ‘a lot’ of 
data on cpu and gpu (and that is 
probably an understatement!)

https://youtu.be/TMorJX3Nj6U?t=5255


Audience Poll: 
How much data 

do you see here?

a.) A lot (More 
than 7mb)
b.) Very little

57

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

My stack on my machine is only 7 
mb

https://youtu.be/TMorJX3Nj6U?t=5255


Can we store all this data on the stack? (1/2)

● So my question is, can we store all of this data on our 
‘stack’?

○ Let’s assume this is several gigabytes of data for arguments 
sake, and that a good chunk of that is on the CPU 

○ (Dear experts :) -- just assume there is a lot of data, even if 
this is a more CPU/GPU memory bound example)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
58

Stack

Code
Data
Heap

Stack Pointer



Can we store all this data on the stack? (2/2)

● So my question is, can we store all of this data on our 
‘stack’?

○ Let’s assume this is several gigabytes of data for arguments 
sake, and that a good chunk of that is on the CPU 

○ (Dear experts :) -- just assume there is a lot of data, even if 
this is a more CPU/GPU memory bound example)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

Stack Pointer

● The answer is no.
● Our stack grows downward, and 

would overflow and overwrite 
other sensitive segments of our 
running processes memory
○ So we have another 

mechanism for ‘large 
allocations’ or otherwise 
allocations we cannot figure 
out at compile-time



Heap Memory
For ‘large’ and/or ‘long lived’ Memory 

Allocations
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Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Heap Memory

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● Heap memory is memory that we 
allocate at ‘run-time’

● ‘The heap’ is some data structure 
that stores our successful requests 
for memory.
○ In order to use that memory, we 

need a ‘pointer’ which stores 
that address of memory

○ We’ll also need some 
bookkeeping mechanism 
which we’ll talk about later



Heap Visualization (1/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● The heap data structure might look 
something like this

● A ‘large collection of bytes

0x70000000 0x70000000 + N



Heap Visualization (2/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;

4

0x70000000 0x70000000 + N



Heap Visualization (3/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N



Heap Visualization (4/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

(Aside)
● The ‘4’ at the start does some bookkeeping in our heap 

structure to tell us how big the allocation was.
● The actual data we write an integer to (again we need 

4 bytes) could come after the little ‘header’ labeled 4 
that does bookkeeping for us.



Heap Visualization (5/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

● So ‘new int’ returned an address to 
some new memory.

● In order to store an address, we need a 
special data type, known as a ‘pointer’ 
(i.e. int*)



Heap Visualization (6/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

● Now before our program terminates, 
we’re going to need to delete the 
memory ‘manually’ that we have 
allocated.



Heap Visualization (7/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● Heap memory is usually meant to be long 
lived
○ (It gets its own section for that reason)

774

0x70000000 0x70000000 + N

● So we use delete data; to reclaim the 
memory in our process.



Heap Visualization (8/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● Heap memory is usually meant to be long 
lived
○ (It gets its own section for that reason)

?????????

0x70000000 0x70000000 + N

● So we’ll use delete data; to reclaim the 
memory in our process.
○ Now our previous block of memory 

in the heap can be repurposed.



Heap Visualization (9/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack

Code
Data
Heap

● Heap memory is usually meant to be long 
lived
○ (It gets its own section for that reason)

77avail
able

0x70000000 0x70000000 + N

● In practice our memory is marked free, 
and likely holds the previous contents



(Quick Recap of our Quick Review)

Stack and Heap
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Stack and Heap (1/2)

● Stack 
○ Fast allocations for local variables
○ memory automatically reclaimed
○ stack size is fixed, so smaller amount of space

● Heap
○ Used for larger allocations
○ Used for long-lived memory

■ And we have to manage the heap in an 
explicit allocator (or otherwise rely on 
infrastructure like a garbage collector to 
reclaim memory)

○ And dynamic memory allocation is slow.
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Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
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Stack and Heap (2/2)

● Stack 
○ Fast allocations for local variables
○ memory automatically reclaimed
○ stack size is fixed, so smaller amount of space

● Heap
○ Used for larger allocations
○ Used for long-lived memory

■ And we have to manage the heap in an 
explicit allocator (or otherwise rely on 
infrastructure like a garbage collector to 
reclaim memory)

○ And dynamic memory allocation is slow.
■ (next slide)
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Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...
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Why is Dynamic Memory Allocation 
Considered Slow?

Specifically with Global General Purpose 
Heap Allocators?

74

Question to Audience: Wait, why is ‘dynamic memory allocation’ 
(i.e. new or malloc) slow -- or at least slow relative to the stack?



Reason # 1 -- malloc/new are general purpose allocators

1.) The allocator is designed to 
handle and book keep 
allocations of any size.
a. General purpose memory 

allocators are designed to do ‘well 
enough’ for most applications.

b. That means allocating 1 byte, 72 
bytes, 1mb, or 2.1gb should be 
supported

c. Handling such a variety of 
scenarios can add a lot of 
overhead per call to ‘malloc’ or 
‘new’ for ‘finding memory’

The ‘new’ header file in gcc 75



Reason# 2 - Context Switching and OS finding resources (1/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back

76



Reason# 2 - Context Switching and OS finding resources (2/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back

77

User 
Code

Our process is executing



Reason# 2 - Context Switching and OS finding resources (3/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back

78

User 
Code

event/system call 
triggers an ‘exception’

Then the user calls 
‘malloc’



Reason# 2 - Context Switching and OS finding resources (4/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back

79

User 
Code

Exception

Kernel Code

event/system call 
triggers an ‘exception’

An exception is called (OS level exception 
on a system call) that transfers control to 
the kernel.

Registers saved in user process, perhaps 
other processes also run in-between.



Reason# 2 - Context Switching and OS finding resources (5/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back

80

User 
Code

Exception

Exception handled by 
exception handler

event/system call 
triggers an ‘exception’

Kernel Code

Our Operating System finds 
some memory that it can return 
(in increments of a ‘page size’)



Reason# 2 - Context Switching and OS finding resources (6/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back
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User 
Code

Exception

Exception

Exception handled by 
exception handler

event/system call 
triggers an ‘exception’

Kernel Code

Our Operating System returns 
control to the process, restores 
registers to our code.



Reason# 2 - Context Switching and OS finding resources (7/7)

2.) When you allocate memory, 
a context switch takes place

a. This means the kernel (which 
is running alongside your 
program in the operating 
system) takes over.

i. It then grants you the 
required memory (if you 
have have enough) and 
then you return to 
executing your program.

ii. Then you context switch 
back
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User 
Code

Exception

Exception

Exception handled by 
exception handler

event/system call 
triggers an ‘exception’

Kernel Code

Our program can now 
proceed.



(Aside) Context Switch Cost

● Note: Anecdotally context switches take the order of 100s-1000s of cycles vs 
regular instructions taking 1-100 cycles.

○ (You can try using rdtsc() to try to measure clock ticks after an allocation)
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A Simple Heap Allocator

To understand some of the challenges of 
memory allocation 

84



Let’s build an Explicit allocator (rather than Implicit allocators)

● Our choice of language often defaults us into an allocation strategy
● Explicit Memory Allocator

○ The application (i.e. you the programmer) is responsible for allocating and 
freeing memory

■ This is what we do in C with malloc and free
■ (or equivalently in C++ with new and delete/delete[])

● Implicit Memory Allocator
○ The application(program) allocates, but does not free memory

■ A garbage collector instead frees the memory for us.
■ e.g. The Java programming language has different garbage collectors to 

help us
● Note: More language these days may offer a combination 

○ (e.g. DLang is implicit by default, but allows you to mark code @nogc and 
perform manual memory allocation)

● Note: And of course, you could roll your own garbage collector for 
C or C++ if you wanted, it’s just not the default 85

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://dlang.org/


Implementation
Building a Memory Allocator

86



mymalloc.c (1/2)

87

● Given in this example is 
“mymalloc.c”

○ You will notice, some of it is 
filled in.

● We are essentially going to 
‘override’ the malloc call 
with our own ‘mymalloc’, 
‘myfree’, ‘mycalloc’, etc..



mymalloc.c (2/2)

88

● Here’s the blocks of code 
where you can replace 
malloc.

● Note: I’m calling the 
original malloc/calloc/free 
-- but we’ll want to replace 
that with something else!

● Thus, we need a tool for 
extending the heap.



(Aside) mymalloc.h - interpositioning
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● You can either use your allocation functions, or try to use some 
compile-time or link-time interpositioning technique to replace malloc.

● malloc.h shows how we are defining ‘malloc’ to actually mean
○ “Hey compiler, you know that code we wrote with ‘malloc’?”
○ “Please replace all malloc’s with mymalloc, so I can test other programs that used 

the malloc.h allocator.”



Ways to request memory for our allocator (on linux) (1/2)

90

System Calls
● sbrk

○ Use internally by allocators to grow or shrink the heap
○ This will be handy for implementing our own memory allocator!

● mmap
○ Creates a new mapping in virtual address space (in page size increments) of calling process.



Ways to request memory for our allocator (on linux) (2/2)
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System Calls
● sbrk

○ Use internally by allocators to grow or shrink the heap
○ This will be handy for implementing our own memory allocator!

● mmap
○ Creates a new mapping in virtual address space (in page size increments) of calling process.

We’ll be using sbrk for our first allocator -- it’s good for our first allocator



sbrk system call
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● The ‘sbrk’ command is 
the system call for 
changing the size of the 
heap segment.

○ (i.e. how we can extend 
the heap)

● Malloc is built on top of 
system commands like 
sbrk (and mmap)

https://man7.org/linux/man-pages/man2/mmap.2.html


sbrk example (1/4)
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● Here is an example of 
extending the heap 4 
bytes

○ Note: sbrk(0) - returns the 
address of the top of the 
heap 



sbrk example (2/4)
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● Here is an example of 
extending the heap 4 
bytes

○ Note: sbrk(0) - returns the 
address of the top of the 
heap 

Question to Audience: Should 
we track our allocations and 
why? Or not (and why?) 



sbrk example (3/4)
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● Here is an example of 
extending the heap 4 
bytes

○ Note: sbrk(0) - returns the 
address of the top of the 
heap 

Question to Audience: Should 
we track our allocations and 
why? Or not (and why?)

For folks answering yes 

We need to keep 
track of this ‘4’ 
byte allocation so 
we can free our 
memory later, and 
know to mark ‘4’ 
bytes as free.



sbrk example (4/4)
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● Here is an example of 
extending the heap 4 
bytes

○ Note: sbrk(0) - returns the 
address of the top of the 
heap 

Question to Audience: Should 
we track our allocations and 
why? Or not (and why?)

For folks answering no 

This is a 
‘monotonic 
allocator’. We 
never pay any 
cost to ‘free’ 
memory



Allocators so far (1/2)

1. malloc/free (C), and new/delete (C++)
a. General purpose global allocators that we can allocate and free memory from

2. alloca
a. Special purpose allocator that allows us to allocate memory on the stack

i. (Memory reclaimed when we leave scope)
3. (heap-based) monotonic allocator

a. An allocator that allocates memory on the heap (perhaps using sbrk).
b. We just allocate -- we never or rarely recycle or reclaim memory to use again, even when 

we’re done with it.
i. See: https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource (C++17)
ii. Search ‘bump allocator’

1. Again idea is to never free, or maybe free all of the memory at once.
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https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource


Allocators so far (2/2)

1. malloc/free (C), and new/delete (C++)
a. General purpose global allocators that we can allocate and free memory from

2. alloca
a. Special purpose allocator that allows us to allocate memory on the stack

i. (Memory reclaimed when we leave scope)
3. (heap-based) monotonic allocator

a. An allocator that allocates memory on the heap (perhaps using sbrk).
b. We just allocate -- we never or rarely recycle or reclaim memory to use again, even when 

we’re done with it.
i. See: https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource (C++17)
ii. Search ‘bump allocator’

1. Again idea is to never free, or maybe free all of the memory at once.
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For some of you, this might be 
the right strategy! The talk is 
effectively done for you :)

For the rest of us, this is a useful 
strategy to know about, that we 
might combine with others.

Let’s learn about bookkeeping 
now :)

https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource


Tracking Memory (i.e. Bookkeeping)

Allocating with sbrk was easy -- how do we keep track and 
free the right amount of memory?
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How much memory do we free when calling free(p0)? (1/4)

● In order to answer this, we need to do some bookkeeping
● That means creating a data structure to track how much memory we are 

using.
○ Note that when we allocate memory, we are actually going to allocate a ‘block’ + the 

size of the actual data we want to store (and maybe more metadata as well).
○ The ‘block’ handles the book keeping

100



How much memory do we free when calling free(p0)? (2/4)

● In order to answer this, we need to do some bookkeeping
● That means creating a data structure to track how much memory we are 

using.
○ Note that when we allocate memory, we are actually going to allocate a ‘block’ + the 

size of the actual data we want to store (and maybe more metadata as well).
○ The ‘block’ handles the book keeping
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Key idea: Malloc’ing 4 
means ‘4’+sizeof(block)
Sometimes we call this the 
‘header’ (See end of slide 
deck for extra slides)



How much memory do we free when calling free(p0)? (3/4)

●

102

So when we free memory, we look 
for the block in a data structure 
that holds all of the blocks--and 
flip a bit to free.

Now what this could mean, is traversing 
through an entire list everytime we want to 
free something!

What strategies do we otherwise have?



How much memory do we free when calling free(p0)? (4/4)

●

103

(Quick note)
‘block size’ in the visualization is 
actually bigger than the 1-byte 
box represented.

○ (For convenience, it is 
represented as one box in 
some of the figures)



Keeping Track of Memory

Data Structures and strategies

104



Keeping track of memory | Strategy 1 - monotonic allocator (1/6)

● Simply allocate memory as you need
○ No need for a block structure even

105



Keeping track of memory | Strategy 1 - monotonic allocator (2/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));

106

‘A’



Keeping track of memory | Strategy 1 - monotonic allocator (3/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
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‘A’‘B’



Keeping track of memory | Strategy 1 - monotonic allocator (4/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
■ char* C = malloc(sizeof(char));

108

‘A’‘B’‘C’



Keeping track of memory | Strategy 1 - monotonic allocator (5/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
■ char* C = malloc(sizeof(char));
■ short* s = malloc(sizeof(short);
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‘A’‘B’‘C’ ? 0 0

Note: we need to take into consideration 
fragmentation (coming up) and alignment, 
thus the gap.
[See wiki]

https://en.wikipedia.org/wiki/Data_structure_alignment#Hardware_significance_of_alignment_requirements


Keeping track of memory | Strategy 1 - monotonic allocator (6/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
■ char* C = malloc(sizeof(char));
■ short* s = malloc(sizeof(short);

● So just to be clear, we are not keeping track of anything here -- our strategy is 
keep track of nothing.

110

‘A’‘B’‘C’ ? 0 0 ...



Keeping track of memory | Strategy 2 - Implicit List

● An implicit list keeps track of all of the blocks using length of allocation in the 
block structure

○ We have this ‘emergent data structure’ that forms a singly linked list for all of the memory that 
we have handed out.

■ Prior to doing a call to sbrk to extend the heap (or mmap), we can then check if a ‘free’ 
block (marked free in the struct block) and reuse that block.

■ When we ‘free’ memory, we simply retrieve the memory address of the data, subtract the 
block size, and mark in that block as free.
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5 3 8 2



Keeping track of memory | Strategy 3 - Explicit List

● An explicit list maintains a list that only points to free blocks 
○ What’s the trade-off?

■ This could make allocation faster--now we iterate through our ‘explicit list’ that points to 
blocks of memory that are free of a certain size.
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5 3 8 2



Keeping track of memory | Strategy 4 - Pool

● Maintain a separate free list for different size classes
○ (i.e. have either multiple linked lists, either explicit or implicit, keeping track of memory)
○ Perhaps size your pools to reasonable values -- all powers of 2

■ Or even better -- sizes of objects in your game/application
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Allocations of 
size 1

Allocations of 
size 2

Allocations of 
size 4

Allocations of 
size 8

etc.



Keeping track of memory | Strategy 5 - Tree

● Maintain a structure that is sorted by 
size

○ Some heap, or balanced tree structure
○ (Red-black tree shown and link to the 

bottom-right)
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https://www.gingerbill.org/article/2021/11/30/memory-allocation-
strategies-005/#red-black-tree-approach

https://www.gingerbill.org/article/2021/11/30/memory-allocation-strategies-005/#red-black-tree-approach
https://www.gingerbill.org/article/2021/11/30/memory-allocation-strategies-005/#red-black-tree-approach


Okay, we have a general idea of our storage 
mechanism (i.e. data structure) to bookkeep 

memory and also find free memory.

What further strategies do we have to 
allocate/free memory during run-time?
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Revisit Naive Strategy -
monotonic allocator

116

● Allocate every time we 
need memory (monotonic 
allocator)

○ (Also see term bump 
allocator)

● I instead want to show 
you how to reuse blocks 
that have been previously 
freed after malloc’ing 

○ (See next slide!)

https://github.com/fitzgen/bumpalo
https://github.com/fitzgen/bumpalo


Implicit List: How to find/choose a free block (1/4)

● First fit strategy (For a first allocator, I recommend this for learning)
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)
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Implicit List: How to find/choose a free block (2/4)

● First fit strategy
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)
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Start 
here



Implicit List: How to find/choose a free block (3/4)

● First fit strategy
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)
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I found two 
blocks here!

Start 
here



Implicit List: How to find/choose a free block (4/4)

● First fit strategy
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

120

malloc(1) 
works here

Start 
here



Implicit List: How to find/choose a free block (1/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits
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Implicit List: How to find/choose a free block (2/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits

122

Start 
here



Implicit List: How to find/choose a free block (3/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits
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malloc(1) 
works here 
(remember 
we need two 
blocks--one 
to store size)

Start 
here



Implicit List: How to find/choose a free block (4/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

■ May be better, avoids re-scanning unhelpful blocks if you are doing many similar 
allocations

■ Could make fragmentation worse though!
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Implicit List: How to find/choose a free block (1/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)
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Implicit List: How to find/choose a free block (2/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)
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Implicit List: How to find/choose a free block (3/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)
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Implicit List: How to find/choose a free block (4/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)
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malloc(1) 
works here

malloc(1) 
works better 
here (less 
fragmentation)Start here 

for 
malloc(1)

Observe that if allocated here instead 
of at the end, we would have ‘1’ 
wasted block (only perhaps available 
for the header)

This is known as fragmentation, and 
it’s a challenge with memory 
allocators



What is Fragmentation?

A challenge with memory allocation
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Question to Audience: Who has run a disk defragmentor?
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● It’s good to do 
relatively often the 
longer you own 
your machine and 
the more files you 
store.



Fragmentation example visualization (1/2)
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Fragmentation example visualization (2/2)
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Ideally we have 
no empty blocks 
ever*

We only want to 
use what we 
need.

These ‘gaps’ are 
sometimes a 
result of what is 
called 
fragmentation. *observer we malloc 17 total bytes at most, so that’s our upper bound. At any given time the maximum we have 

is ‘15’ bytes, but we always have some extra empty blocks.



Excessive Fragmentation = Poor memory utilization (1/2)

● Two types of fragmentation
a. Internal Fragmentation

■ e.g. we allocate structures smaller 
than our block size of X bytes (where 
X is architecture dependent)

● (e.g. We allocate 1 character 
which is one byte, but our 
blocks are given out 8 bytes at 
a time)

b. External Fragmentation
■ We have enough blocks (i.e. we don’t 

need to extend the heap), but the 
allocations are not all contiguous

●  -- see on the right that we 
cannot malloc(4) for instance. 133

1

2

3

4

5



Excessive Fragmentation = Poor memory utilization (2/2)

● Two types of fragmentation
a. Internal Fragmentation

■ e.g. we allocate structures smaller 
than our block size of X bytes (where 
X is architecture dependent)

● (e.g. We allocate 1 character 
which is one byte, but our 
blocks are given out 8 bytes at 
a time)

b. External Fragmentation
■ We have enough blocks (i.e. we don’t 

need to extend the heap), but the 
allocations are not all contiguous 
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Note: It is hard up to this point to 
know fragmentation will occur based 
on the order of mallocs and frees.

We cannot always predict the future.
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Splitting and Coalescing (i.e. Combining 
Blocks)

To help avoid fragmentation/use finite 
resources more efficiently
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Implicit List: How to allocate a free block? (Possible to split) (1/2)

● Depending on our strategy
○ We could allocate to the block found

■ i.e. we set a pointer to that block and size
■ We may want to also split that block if there is room to do so and leave some 

reasonable free space for another allocation (See example below)
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Implicit List: How to allocate a free block? (Possible to split) (2/2)

● Depending on our strategy
○ We could allocate to the block found

■ i.e. we set a pointer to that block and size
■ We may want to also split that block if there is room to do so and leave some 

reasonable free space for another allocation (See example below)
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5 3 5

allocate: ‘p’ here that is 4 bytes + header

3 2



Implicit List: How to free a block and combine? (1/3)

● Simply free a block by setting the free bit in the header
○ This could lead to fragmentation however!
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Implicit List: How to free a block and combine? (2/3)

● Simply free a block by setting the free bit in the header
○ This could lead to fragmentation however!
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5 3 5 3 2

Let’s free p now, and now below 
‘p’ is logically free.



Implicit List: How to free a block and combine? (3/3)

● Simply free a block by setting the free bit in the header
○ This could lead to fragmentation however!
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5 3 8 3 2

Could combine (coalesce) 
adjacent free blocks into a 
bigger block of ‘8’



Global and Local Allocators

(Approaching the ‘finale’ portion of the talk)
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Global versus Local allocators (1/10)

● So we’ve got a way to grab memory
● We have a way to track memory
● And we have a way to navigate memory 

allocations to fit in new memory
○ First-fit, next-fit, best-fit

● We’ve been assuming we get all of the 
memory as shown on the right in our 
allocator

● This is how ‘malloc’ implementations 
operate
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Global versus Local allocators (2/10)

● There are some issues that arise with a 
global allocator

○ We have a lot of memory to manage -- so we 
might get fragmentation 

○ (and diffusion -- which is lots of allocations left 
all over memory)
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Global versus Local allocators (3/10)

● There are some issues that arise with a 
global allocator

○ We have a lot of memory to manage -- so we 
might get fragmentation

○ (and diffusion -- which is lots of allocations left 
all over memory)
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Global versus Local allocators (4/10)

● There are some issues that arise with a 
global allocator

○ We have a lot of memory to manage -- so we 
might get fragmentation

○ We might also have issues of ‘contention’ with 
multithreaded programs

■ So let’s imagine two threads are calling 
on ‘malloc’ to allocate

■ Essentially we need a global lock
● (another reason heap memory 

allocation slows down)
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Global versus Local allocators (5/10)

● There are some issues that arise with a 
global allocator

○ We have a lot of memory to manage -- so we 
might get fragmentation

○ We might also have issues of ‘contention’ with 
multithreaded programs

■ So let’s imagine two threads are calling 
on ‘malloc’ to allocate

■ Essentially we need a global lock
● (another reason heap memory 

allocation slows down)
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for open memory need to 
obtain a lock first



Global versus Local allocators (6/10)

● There are some issues that arise with a 
global allocator

○ We have a lot of memory to manage -- so we 
might get fragmentation

○ We might also have issues of ‘contention’ with 
multithreaded programs

■ So let’s imagine two threads are calling 
on ‘malloc’ to allocate

■ Essentially we need a global lock
● (another reason heap memory 

allocation slows down)
○ And we haven’t touched on locality yet -- but 

because we’ve guided our program to look 
everywhere for memory, this has implications 
on cache performance.

147

CPU

M
ai

n 
M

em
or

y



Global versus Local allocators (7/10)

● One strategy is to use ‘local allocators’ 
that are given a few pages (or some 
other fixed allocation size that you 
choose)
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Global versus Local allocators (8/10)

● One strategy is to use ‘local allocators’ 
that are given a few pages (or some 
other fixed allocation size that you 
choose)
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Global versus Local allocators (9/10)

● One strategy is to use ‘local allocators’ 
that are given a few pages (or some 
other fixed allocation size that you 
choose)

○ Now within each of these regions, you might 
have different allocation strategies themselves!

■ e.g.
● Region 1 is a pool allocator with 

certain fixed sizes
● Region 2 acts as a general purpose 

allocator
○ And if Region 2 runs out of 

memory, it could fall back to 
‘malloc’ for instance 150
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Global versus Local allocators (10/10)

● Kind of neat if we size ‘Region 1’ to 
match your L1/L2/L3/L4 cache size for 
some subsystem that you’re utilizing.

● Kind of neat if ‘Region 1’ and ‘Region 2’ 
can be used safely from separate threads

○ i.e. we can avoid some contention
● Kind of neat if you can fit one subsystem 

(graphics, AI, physics) in a specific region
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Here is some 
‘example’ of how you 
might structure an 
arena allocator

(This is purely 
slideware, but 
probably a reasonable 
interface to build off 
of)
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Some more Ideas and Best Practices
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mmap

154

● Our strategy of using ‘sbrk’ to 
allocate works

● But making calls to ‘sbrk’ 
constantly is performing many 
systems calls

● Instead, we typically allocate 
in ‘page size’ increments and 
can use mmap to ask for 
larger allocations.

○ sbrk again might be used for 
small heap allocations in a 
global allocator



Potentially Ideal ‘Heap’ Memory Management

● Only one large heap allocation (at the start of the program) in order avoid 
system calls context switches.
○ i.e. allocate one big chunk (e.g. malloc(100000000); or new data[10000000];)
○ Note: This is essentially what we do per process for stack memory -- just allocate once.

● Once we have our large block of memory, you can then divide it up as needed 
and perform bookkeeping
○ Again, take advantage of your custom memory allocator to handle when a programmer asks 

for memory.
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A few more ideas

● Consider trying to avoid dynamic memory allocations altogether!
○ e.g. static strings allocated in static portion of memory
○ e.g. create static containers
○ e.g. small string allocations (small string allocations get stored on stack

■ i.e. think about where you can put memory
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Conclusion and Further Resources
Wrapping up what we’ve learned
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Summary on Memory Allocation
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● We should have a good understanding of stack and heap
○ And the tradeoffs when allocating in each segment of memory in our process

● We’ve discussed motivation on why we might want to move away from using 
a general purpose heap allocator (e.g. malloc)

○ We’ve looked at some different memory allocator strategies
○ We’ve looked at some allocator designs

■ alloca
■ monotonic
■ various dynamic memory allocators using ‘sbrk’
■ LocalArena allocator



The Next 3 Resources to Learn More (1/3)

(Listed in the order I think they should be read/watched)

1. Computer Systems: A Programmer’s Perspective (Wonderful book)
a. Book used in Carnegie Mellon Course on Systems 

2. Jason Gregory
a. Game Engine Architecture
b. https://www.gameenginebook.com/  (The book is wonderful!)

3. John Lakos Arena allocators talk
a. https://www.youtube.com/watch?v=xUtndRUJHX8&t=1s 
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https://www.cs.cmu.edu/~213/
https://www.gameenginebook.com/
https://www.youtube.com/watch?v=xUtndRUJHX8&t=1s


Resources (2/3)

● Jason Gregory’s book “Game Engine Architecture” 
is where I learned a lot of this stuff a few years ago

○ https://www.gameenginebook.com/ 
● (And Jason has presented at an iteration of 

handmade -- how I originally found out about 
Handmade Seattle!)
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https://www.gameenginebook.com/


Resources (3/3)

● Ryan Fleury blog post
○ https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator (Thank you for sending this Abner)

● Emery Bergers paper on custom memory allocators vs malloc (2002)
○ “On reconsidering memory management)

● Emery Berger paper on Hoard 
https://en.wikipedia.org/wiki/Hoard_memory_allocator

● More overview on different types of memory allocators
○ https://www.openmp.org/spec-html/5.0/openmpsu53.html  

● See other allocation strategies
○ Slab allocator (GNU libc)
○ Buddy system (linux kernel)

● Googles allocator tcmalloc [github]
● jemalloc [https://jemalloc.net/] [github] [Video]
● CppCon 2017: Pablo Halpern “Allocators: The Good Parts” 
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https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator
https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
https://en.wikipedia.org/wiki/Hoard_memory_allocator
https://www.openmp.org/spec-html/5.0/openmpsu53.html
https://github.com/google/tcmalloc
https://jemalloc.net/
https://github.com/jemalloc
https://www.youtube.com/watch?v=RcWp5vwGlYU
https://www.youtube.com/watch?v=v3dz-AKOVL8


Small Aside

● Of the two books in my ‘Building 
Game Engines’  -- they are from 
two speakers who’ve presented in 
the Handmade community

○ Jason Gregory -- Game Engine 
Architecture

○ Robert Nystrom -- Game Programming 
Patterns

● Go buy the books if you are able, 
they’re worth every dollar to 
support the authors.
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Introduction to Memory Allocation: 
Design and Implementation

Social:  @MichaelShah
Web:     mshah.io
Courses: courses.mshah.io
YouTube: 
www.youtube.com/c/MikeShah 163

Thank you!

17:00-18:00, Wed, 16th November 2022
https://handmade-seattle.com/ 
60 minutes | Introductory/Intermediate Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
https://handmade-seattle.com/


Extras and Notes
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