
Introduction to Memory Allocation:
Design and Implementation

17:00-18:00, Wed, 16th November 2022
https://handmade-seattle.com/
60 minutes | Introductory/Intermediate Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 1

https://handmade-seattle.com/
https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

2

Goal(s) for today

3

What you’re going to learn

● For our audience
○ Learn about memory allocation
○ Understand how we would implement a memory allocator from scratch
○ Look at different types of allocators
○ Look at the design of some of the more popular allocators

● The target experience level for this talk is probably more beginner level
○ I think beginners will get a lot out of the examples and resources in one place
○ I hope this talk encourages intermediate users to think and try building an allocator

■ (This is the handmade community after all, I assume folks will want to build at least a
simple implementation at some point :))

○ I think experts will have strong opinions already on this topic already

4

Your Tour Guide for Today
by Mike Shah (he/him)

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training coming at courses.mshah.io 5

http://www.mshah.io
http://courses.mshah.io

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2022_Handmade_Seattle

6

https://github.com/MikeShah/Talks/tree/main/2022_Handmade_Seattle

Abstract

Has anyone told you that memory allocation is too slow? Do your colleagues
shutter when you say malloc? Is malloc actually slow? How would we
know if allocation is too slow? In this talk I will provide an introduction to
stack and heap based memory allocation strategies and trade-offs. We'll
understand the difference between stack and heap based memory, and then
move on to different implementations of stack and heap based allocators
and where they might be used. Throughout the talk, I will also show you how
to build a simple heap memory allocator to demonstrate by example some of
the design decisions that you have to make.

The abstract that you read and enticed
you to join me is here!

7

Prerequisite Knowledge for this Presentation
With a few links so you can get up to speed if needed

Note: I’m going to flip through these quite fast -- our audience in attendance is
likely well versed, but for you folks in the future watching this I hope this is helpful.

8

Prereq 1/4 - What is a raw pointer?

9

42

0xf8888888

0xf8888888

0xf8888884

int x = 42;

(int)

int* px = &x;

(pointer to
integer)

● If this picture makes sense
to you, and you can explain
in your own words what a
pointer is -- let’s proceed!

● Don’t have the prerequisite?
Search on YouTube Learn and
understand (almost) everything
about the fundamentals of C++
pointers in 96 minutes

https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw
https://youtu.be/2R5cjpi9Fzw

Prereq 2/4 - There are multiple types of physical memory

● It’s useful to understand there’s a memory
hierarchy, with different types of memory,

○ and ‘the why’ for the different layers (locality)
and how that improves performance we have it
for performance

● It will be useful to know a little bit about
how virtual memory [wiki] works

○ And why virtual memory allows programmers
to ‘think’ think about memory as a contiguous
segment.

https://en.wikipedia.org/wiki/Memory_hierarchy

10

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Memory_hierarchy

Prereq 3/4 I’ll assume you’ve used malloc/free found in<stdlib.h> or <malloc.h>

● void* malloc(size_t size);
○ On Success Returns a pointer to a memory block of at least size

bytes
■ For x86 this memory is aligned to 8-byte boundaries
■ For x86-64 this memory is aligned to 16-byte boundaries

○ A size of 0 returns NULL
○ Unsuccessful allocation: returns NULL(0)

● void free(void *p);
○ Reclaims memory allocated by malloc, calloc, or realloc.

■ (Returns the block pointed at by p to pool of available
memory)

○ p must come from previous call to malloc (or realloc)
■ Note: Never use free with delete (used in C++), these are

different allocators!
● void* calloc(size_t nmemb, size_t size);

○ Similar to malloc, but initializes the allocated block to zero.
● void* realloc(void* ptr, size_t size);

○ Changes size of previously allocated block, contents of new block
unchanged

11

Prereq 4/4 I’ll assume you’ve used malloc/free found in<stdlib.h> or <malloc.h>

● void* malloc(size_t size);
○ On Success Returns a pointer to a memory block of at least size

bytes
■ For x86 this memory is aligned to 8-byte boundaries
■ For x86-64 this memory is aligned to 16-byte boundaries

○ A size of 0 returns NULL
○ Unsuccessful allocation: returns NULL(0)

● void free(void *p);
○ Reclaims memory allocated by malloc, calloc, or realloc.

■ (Returns the block pointed at by p to pool of available
memory)

○ p must come from previous call to malloc (or realloc)
■ Note: Never use free with delete (used in C++), these are

different allocators!
● void* calloc(size_t nmemb, size_t size);

○ Similar to malloc, but initializes the allocated block to zero.
● void* realloc(void* ptr, size_t size);

○ Changes size of previously allocated block, contents of new block
unchanged

12

Most example code will just use plain C or
C++, and you can translate to whatever
language you like.

Note: Sometimes I’ll use ‘malloc’ or ‘new’
depending on what’s more convenient or
clear but the idea is interchangeable

One last note -- examples are often graphics/games (1/2)

● Most of my examples will be slanted towards 3D graphics/game programming
○ My apologies and I take no offense if you don’t like or play video games!
○ Most of the material from this presentation should be able to be applied to other industries

(especially where memory allocation matters!)
○ e.g. low latency trading applications, computational biology, etc.

● Also, I’m going to break every *good* powerpoint rule about the amount of
text on a slide that is appropriate.

○ Why? This is somewhat my style, but I personally like having slides where I can remember
what the speaker was talking about.

13

One last note -- examples are often graphics/games (2/2)

● Most of my examples will be slanted towards 3D graphics/game programming
● My apologies and I take no offense if you don’t like or play video games.
● Most of the material from this presentation should be able to be applied to

other industries (especially where memory allocation matters!)
○ e.g. low latency trading applications, computational biology, etc.

14

Alright, let’s talk
about memory

allocators!

Memory Allocators
Why do we care? What are the Benefits?

15

16

 Performance is the currency
of computing.

17

“Performance is the currency
of computing. You can often
“buy” needed properties [of
software] with performance” -
Charles Leiserson

https://en.wikipedia.org/wiki/Charles_E._Leiserson

1. Performance

18

● Pragmatically, better performance
means you can do more, or more
interesting computation elsewhere
with your resources.

○ Often this means better ‘something’
which is often:

■ Graphics
■ AI
■ More precise physics
■ Gameplay
■ More battery life
■ etc.

● So when creating a memory
allocator we’ll achieve
performance by thinking about
things like ‘locality’ and
‘contention’

https://www.3dmark.com/

https://www.3dmark.com/

2. Safety

19

● Memory allocators can
provide a layer of abstraction
for safety

○ https://news.ycombinator.com/it
em?id=33553668

https://media.defense.gov/2022/Nov/10/2003112742/-1/
-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://news.ycombinator.com/item?id=33553668
https://news.ycombinator.com/item?id=33553668
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

3. Economics

20

● Better utilization of memory,
less time spent on cpus, and
lower costs

● (We can probably quantify
this by measuring how well
our allocators prevent or
reduce bugs and save
engineers time)

https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowerc
ase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all

https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhB
EzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds

https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhBEzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds
https://cloud.google.com/pricing/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9tIUZxgL_AnVfEhBEzfKLV8SUhbzKzbK1S9g9v2bNGhyHVXyKoh2fIaAkUcEALw_wcB&gclsrc=aw.ds

Should I still write my own allocator? (1/2)

● A simple one (which also might be the right one) at the least will give you an
appreciation I think of memory.

○ You will have to think about trade-offs (which is what different allocators offer) which is a good
thing.

○ For newer programmers (especially when using purely C) I think it may also give you a ‘new
mental model’

■ C to me is a ‘data layout language’
● We’re just accessing (reading/writing) ‘bytes’ from a giant array of memory.

21

Should I still write my own allocator? (2/2)

● A simple one (which also might be the right one) at the least will give you an
appreciation I think of memory.

○ You will have to think about trade-offs (which is what different allocators offer) which is a good
thing.

○ For newer programmers (especially when using purely C) I think it may also give you a ‘new
mental model’

■ C to me is a ‘data layout language’
● We’re just accessing (reading/writing) ‘bytes’ from a giant array of memory.

22

To the handmade community
- I think we just like to know how things work

- Sometimes it’s the right thing to do
- i.e. build a tool/library that solves your exact

problem given your input.
- But importantly, it helps us innovate later.
- And as I said, it may give you another way to *think*

about computer science, abstraction, and models of
computation

- (psst...and it’s fun!)

Why should you not write an allocator?

● You don’t have the budget (time & money) to spend on this
○ Creating an allocator requires some amount of thinking and design before starting
○ It’s possible that a new allocator introduces complexity that is not needed in your project

beyond what well purposed global allocators (e.g. malloc or new) offer.
● You don’t really need better performance beyond what a general allocator

(e.g. ‘malloc’ in C or ‘new’ in C++) provide.

23

(Quick Review)

Hardware -- Our “Working Memory”
(Also called ‘main memory’ or specifically DRAM - Dynamic Random Access Memory)

24

We have many types of physical memory

● The goal of memory is to store ‘data’
○ The duration of that storage could vary depending on

the storage medium
■ (e.g. a hard drive or cloud storage should store

information indefinitely)
● (Aside: As an expert, you’re probably thinking

more about the mediums, allocators, allocation
size, where the memory lives, data access
patterns, data lifetime and various ‘misses’ that
can occur in different caches.)

25

Programmers View of working (or ‘main’) memory (1/3)

● So roughly speaking we have a
contiguous block of memory that
looks something like this.

Address (in Hex) Value
0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000
26

Programmers View of working (or ‘main’) memory (2/3)

● So roughly speaking we have a
contiguous block of memory that
looks something like this.

● When we create a variable, a
certain amount of that storage is
allocated for that variable.

Address (in Hex) Value
0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000
27

Address (in Hex) Value
0x1000000B

0x1000000A

0x10000009

0x10000008

0x10000007

0x10000006

0x10000005

0x10000004

0x10000003

0x10000002

0x10000001

0x10000000

Programmers View of working (or ‘main’) memory (3/3)

● So roughly speaking we have a
contiguous block of memory that
looks something like this.

● When we create a variable, a
certain amount of that storage is
allocated for that variable.

○ for example
■ int x = 42;
■ (int is usually 4 bytes,

thus 4 bytes taken in
the illustration where 1
box = 1 byte of memory)

42

28

Operating System View of Processes (1/3)

● Now keep in mind we have many
programs running at once

○ So per process our operating system
has given some memory allocated to
each process.

2929

Address (in Hex) Value
0x10000000

+ N bytes
...

...

...

...

...

...

...

...

...

...

0x10000000

Operating System View of Processes (2/3)

● Now keep in mind we have many
programs running at once

○ So per process our operating system
has given some memory allocated to
each process.

■ Here are two processes for
example

Address (in Hex) Value
0x20000000 + M

...

...

0x20000000

...

...

...

...

0x10000000 + N

...

...

0x10000000
30

Process
B

Process
A

Operating System View of Processes (3/3)

● Now keep in mind we have many
programs running at once

○ So per process our operating system
has given some memory allocated to
each process.

■ Here are two processes for
example

○ Let’s focus on just one process and
zoom in a little bit on the memory in
that single process

Address (in Hex) Value
0x20000000 + M

...

...

0x20000000

...

...

...

...

0x10000000 + N

...

...

0x10000000
31

Process
B

Process
A

(Quick Review)

Segments of a Running
Process

32

Address (in Hex) Value
0x10000000 + N

...

...

...

...

...

...

...

...

...

0x10000000

Process
A

A Single Processes Memory Segments (1/2)

● A process (i.e. a program running on your
program) is organized into a few segments of
memory

Address (in Hex) Value
0x10000000 + N

...

...

...

...

...

...

...

...

...

0x10000000
33

Process
A

A Single Processes Memory Segments (2/2)

● A process (i.e. a program running on your
program) is organized into a few segments of
memory

○ (Read from bottom to top)
■ code (or .text) is where our code is
■ data (initialized and uninitialized data stored in

an object file)
■ heap for dynamically allocated memory
■ stack for our ‘temporary’ memory
■ (Aside: There may be many other segments as

well -- use otool or objdump to see other
sections like debug, exception table, etc.)

Address (in Hex) Value
0x10000000 + N

...

...

...

...

...

...

...

...

...

0x10000000
34

Stack

Code
Data
Heap

(Aside) From a Code Standpoint

● A process on an
operating system is
just a ‘struct’

○ Observer there’s a
pointer to the stack

○ Each process also
gets a ‘page table’
(page definition
useful later) for heap
allocated memory

35

https://github.com/jeffallen/xv6/blob/master/proc.h

Stack

Code
Data
Heap

https://github.com/jeffallen/xv6/blob/master/proc.h

Memory Allocation

36

Stack

Code
Data
Heap

Memory Allocation

37

Stack

Code
Data
Heap

● In order to understand the different ‘segments’ of memory,
let’s take a look at ‘stack’ and ‘heap’ memory.

A Process and its stack memory (1/5)
Address (in Hex) Value

0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
38

Stack

Code
Data
Heap

A Process and its stack memory (2/5)

● Executing this line, we’ll allocate on the
‘stack’ space for x.

○ x stores the value ‘42’

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
39

Stack

Code
Data
Heap

A Process and its stack memory (3/5)

● Executing this line, we’ll allocate on the
‘stack’ space for x.

○ x stores the value ‘42’

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
40

Stack

Code
Data
Heap

42

A Process and its stack memory (4/5)

● And we can use ‘&’ operator to retrieve that
actual stack address!

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
41

Stack

Code
Data
Heap

42

A Process and its stack memory (5/5)

● And we can use ‘&’ operator to retrieve that
actual stack address!

Address (in Hex) Value
0x16d5ff988

...

...

...

...

...

...

...

...

...

0x10000000
42

Stack

Code
Data
Heap

42

Stack Allocation With Multiple Variables (1/4)

● Here’s another example showing what
happens when you allocate multiple
variables.

○ The stack grows downward in the order of the
allocations.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
43

Stack

Code
Data
Heap

Stack Allocation With Multiple Variables (2/4)

● Here’s another example showing what
happens when you allocate multiple
variables.

○ The stack grows downward in the order of the
allocations.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
44

Stack

Code
Data
Heap

(x) 42

Stack Allocation With Multiple Variables (3/4)

● Here’s another example showing what
happens when you allocate multiple
variables.

○ The stack grows downward in the order of the
allocations.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
45

Stack

Code
Data
Heap

(x) 42
(y) 42

Stack Allocation With Multiple Variables (4/4)

● Observe the memory addresses growing
downward

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
46

Stack

Code
Data
Heap

(x) 42
(y) 42

Automatic Memory Management -- Local Variables Popped off stack (1/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
47

Stack

Code
Data
Heap

(x) 42
(y) 42

Automatic Memory Management -- Local Variables Popped off stack (2/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
48

Stack

Code
Data
Heap

(x) 42
(y) 42

Stack Pointer

Automatic Memory Management -- Local Variables Popped off stack (3/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
49

Stack

Code
Data
Heap

(x) 42
???Stack Pointer

Automatic Memory Management -- Local Variables Popped off stack (4/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
50

Stack

Code
Data
Heap

???
???

Stack Pointer

Automatic Memory Management -- Local Variables Popped off stack (5/5)

● Now when we reach the end of our current scope
○ Anything allocated on the stack within the ‘block scope’

(i.e. current stack frame) will be ‘popped’ off the stack
○ This is effectively done by moving a ‘stack pointer’ to the

next available location to overwrite.

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
51

Stack

Code
Data
Heap

???
???

Stack PointerSo at this point:
● We understand that stack memory is automatically

managed for us
○ Memory is placed on the stack
○ Stack allocated memory will be reclaimed at the end

of its block scope
● Pretty simple model!

○ (And for performance working with memory on the
stack is fast!)

Automatic Memory Management -- Local Variables Popped off stack (4/5)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
52

Stack

Code
Data
Heap

???
???

Quick Note: We can use
‘alloca’ to also explicitly
allocate on the stack as well.

‘alloca’ would be our first
example a memory allocator
-- this one with a special
purpose to allocate memory
on the stack

Question for Audience: (1/2)
Address (in Hex) Value

0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
53

Stack

Code
Data
Heap

buffer....
How do folks feel about this huge memory
allocation on the stack?

Hint which way does stack grow (in our example)?

Question for Audience: (2/2)
Address (in Hex) Value

0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
54

Stack

Code
Data
Heap

buffer....

Answer: Our stack is going to overflow --
overwriting other segments of memory -- this
is bad.

Our stack is a ‘fixed size’

Audience Poll:
How much data

do you see here?

a.) A lot (More
than 7MB)
b.) Very little

55

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

https://youtu.be/TMorJX3Nj6U?t=5255

Audience Poll:
How much data

do you see here?

a.) A lot (More
than 7mb)
b.) Very little

56

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

Humor me here -- there’s ‘a lot’ of
data on cpu and gpu (and that is
probably an understatement!)

https://youtu.be/TMorJX3Nj6U?t=5255

Audience Poll:
How much data

do you see here?

a.) A lot (More
than 7mb)
b.) Very little

57

Nanite | Inside Unreal
https://youtu.be/TMorJX3Nj6U?t=5255

My stack on my machine is only 7
mb

https://youtu.be/TMorJX3Nj6U?t=5255

Can we store all this data on the stack? (1/2)

● So my question is, can we store all of this data on our
‘stack’?

○ Let’s assume this is several gigabytes of data for arguments
sake, and that a good chunk of that is on the CPU

○ (Dear experts :) -- just assume there is a lot of data, even if
this is a more CPU/GPU memory bound example)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
58

Stack

Code
Data
Heap

Stack Pointer

Can we store all this data on the stack? (2/2)

● So my question is, can we store all of this data on our
‘stack’?

○ Let’s assume this is several gigabytes of data for arguments
sake, and that a good chunk of that is on the CPU

○ (Dear experts :) -- just assume there is a lot of data, even if
this is a more CPU/GPU memory bound example)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
59

Stack

Code
Data
Heap

Stack Pointer

● The answer is no.
● Our stack grows downward, and

would overflow and overwrite
other sensitive segments of our
running processes memory
○ So we have another

mechanism for ‘large
allocations’ or otherwise
allocations we cannot figure
out at compile-time

Heap Memory
For ‘large’ and/or ‘long lived’ Memory

Allocations

60

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
60

Stack

Code
Data
Heap

Heap Memory

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
61

Stack

Code
Data
Heap

● Heap memory is memory that we
allocate at ‘run-time’

● ‘The heap’ is some data structure
that stores our successful requests
for memory.
○ In order to use that memory, we

need a ‘pointer’ which stores
that address of memory

○ We’ll also need some
bookkeeping mechanism
which we’ll talk about later

Heap Visualization (1/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
62

Stack

Code
Data
Heap

● The heap data structure might look
something like this

● A ‘large collection of bytes

0x70000000 0x70000000 + N

Heap Visualization (2/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
63

Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;

4

0x70000000 0x70000000 + N

Heap Visualization (3/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
64

Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

Heap Visualization (4/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
65

Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

(Aside)
● The ‘4’ at the start does some bookkeeping in our heap

structure to tell us how big the allocation was.
● The actual data we write an integer to (again we need

4 bytes) could come after the little ‘header’ labeled 4
that does bookkeeping for us.

Heap Visualization (5/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
66

Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

● So ‘new int’ returned an address to
some new memory.

● In order to store an address, we need a
special data type, known as a ‘pointer’
(i.e. int*)

Heap Visualization (6/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
67

Stack

Code
Data
Heap

● We ‘manually’ allocate memory using new
○ e.g. int* data = new int;
○ And assign with: *data = 77;

774

0x70000000 0x70000000 + N

● Now before our program terminates,
we’re going to need to delete the
memory ‘manually’ that we have
allocated.

Heap Visualization (7/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
68

Stack

Code
Data
Heap

● Heap memory is usually meant to be long
lived
○ (It gets its own section for that reason)

774

0x70000000 0x70000000 + N

● So we use delete data; to reclaim the
memory in our process.

Heap Visualization (8/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
69

Stack

Code
Data
Heap

● Heap memory is usually meant to be long
lived
○ (It gets its own section for that reason)

?????????

0x70000000 0x70000000 + N

● So we’ll use delete data; to reclaim the
memory in our process.
○ Now our previous block of memory

in the heap can be repurposed.

Heap Visualization (9/9)

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000
70

Stack

Code
Data
Heap

● Heap memory is usually meant to be long
lived
○ (It gets its own section for that reason)

77avail
able

0x70000000 0x70000000 + N

● In practice our memory is marked free,
and likely holds the previous contents

(Quick Recap of our Quick Review)

Stack and Heap

71

Stack and Heap (1/2)

● Stack
○ Fast allocations for local variables
○ memory automatically reclaimed
○ stack size is fixed, so smaller amount of space

● Heap
○ Used for larger allocations
○ Used for long-lived memory

■ And we have to manage the heap in an
explicit allocator (or otherwise rely on
infrastructure like a garbage collector to
reclaim memory)

○ And dynamic memory allocation is slow.

72

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000

Stack

Code
Data
Heap

Stack and Heap (2/2)

● Stack
○ Fast allocations for local variables
○ memory automatically reclaimed
○ stack size is fixed, so smaller amount of space

● Heap
○ Used for larger allocations
○ Used for long-lived memory

■ And we have to manage the heap in an
explicit allocator (or otherwise rely on
infrastructure like a garbage collector to
reclaim memory)

○ And dynamic memory allocation is slow.
■ (next slide)

73

Address (in Hex) Value
0x16d7f38d8

0x16d7f38d4

...

...

...

...

...

...

...

...

0x10000000

Stack

Code
Data
Heap

Why is Dynamic Memory Allocation
Considered Slow?

Specifically with Global General Purpose
Heap Allocators?

74

Question to Audience: Wait, why is ‘dynamic memory allocation’
(i.e. new or malloc) slow -- or at least slow relative to the stack?

Reason # 1 -- malloc/new are general purpose allocators

1.) The allocator is designed to
handle and book keep
allocations of any size.
a. General purpose memory

allocators are designed to do ‘well
enough’ for most applications.

b. That means allocating 1 byte, 72
bytes, 1mb, or 2.1gb should be
supported

c. Handling such a variety of
scenarios can add a lot of
overhead per call to ‘malloc’ or
‘new’ for ‘finding memory’

The ‘new’ header file in gcc 75

Reason# 2 - Context Switching and OS finding resources (1/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

76

Reason# 2 - Context Switching and OS finding resources (2/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

77

User
Code

Our process is executing

Reason# 2 - Context Switching and OS finding resources (3/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

78

User
Code

event/system call
triggers an ‘exception’

Then the user calls
‘malloc’

Reason# 2 - Context Switching and OS finding resources (4/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

79

User
Code

Exception

Kernel Code

event/system call
triggers an ‘exception’

An exception is called (OS level exception
on a system call) that transfers control to
the kernel.

Registers saved in user process, perhaps
other processes also run in-between.

Reason# 2 - Context Switching and OS finding resources (5/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

80

User
Code

Exception

Exception handled by
exception handler

event/system call
triggers an ‘exception’

Kernel Code

Our Operating System finds
some memory that it can return
(in increments of a ‘page size’)

Reason# 2 - Context Switching and OS finding resources (6/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

81

User
Code

Exception

Exception

Exception handled by
exception handler

event/system call
triggers an ‘exception’

Kernel Code

Our Operating System returns
control to the process, restores
registers to our code.

Reason# 2 - Context Switching and OS finding resources (7/7)

2.) When you allocate memory,
a context switch takes place

a. This means the kernel (which
is running alongside your
program in the operating
system) takes over.

i. It then grants you the
required memory (if you
have have enough) and
then you return to
executing your program.

ii. Then you context switch
back

82

User
Code

Exception

Exception

Exception handled by
exception handler

event/system call
triggers an ‘exception’

Kernel Code

Our program can now
proceed.

(Aside) Context Switch Cost

● Note: Anecdotally context switches take the order of 100s-1000s of cycles vs
regular instructions taking 1-100 cycles.

○ (You can try using rdtsc() to try to measure clock ticks after an allocation)

83

A Simple Heap Allocator

To understand some of the challenges of
memory allocation

84

Let’s build an Explicit allocator (rather than Implicit allocators)

● Our choice of language often defaults us into an allocation strategy
● Explicit Memory Allocator

○ The application (i.e. you the programmer) is responsible for allocating and
freeing memory

■ This is what we do in C with malloc and free
■ (or equivalently in C++ with new and delete/delete[])

● Implicit Memory Allocator
○ The application(program) allocates, but does not free memory

■ A garbage collector instead frees the memory for us.
■ e.g. The Java programming language has different garbage collectors to

help us
● Note: More language these days may offer a combination

○ (e.g. DLang is implicit by default, but allows you to mark code @nogc and
perform manual memory allocation)

● Note: And of course, you could roll your own garbage collector for
C or C++ if you wanted, it’s just not the default 85

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://dlang.org/

Implementation
Building a Memory Allocator

86

mymalloc.c (1/2)

87

● Given in this example is
“mymalloc.c”

○ You will notice, some of it is
filled in.

● We are essentially going to
‘override’ the malloc call
with our own ‘mymalloc’,
‘myfree’, ‘mycalloc’, etc..

mymalloc.c (2/2)

88

● Here’s the blocks of code
where you can replace
malloc.

● Note: I’m calling the
original malloc/calloc/free
-- but we’ll want to replace
that with something else!

● Thus, we need a tool for
extending the heap.

(Aside) mymalloc.h - interpositioning

89

● You can either use your allocation functions, or try to use some
compile-time or link-time interpositioning technique to replace malloc.

● malloc.h shows how we are defining ‘malloc’ to actually mean
○ “Hey compiler, you know that code we wrote with ‘malloc’?”
○ “Please replace all malloc’s with mymalloc, so I can test other programs that used

the malloc.h allocator.”

Ways to request memory for our allocator (on linux) (1/2)

90

System Calls
● sbrk

○ Use internally by allocators to grow or shrink the heap
○ This will be handy for implementing our own memory allocator!

● mmap
○ Creates a new mapping in virtual address space (in page size increments) of calling process.

Ways to request memory for our allocator (on linux) (2/2)

91

System Calls
● sbrk

○ Use internally by allocators to grow or shrink the heap
○ This will be handy for implementing our own memory allocator!

● mmap
○ Creates a new mapping in virtual address space (in page size increments) of calling process.

We’ll be using sbrk for our first allocator -- it’s good for our first allocator

sbrk system call

92

● The ‘sbrk’ command is
the system call for
changing the size of the
heap segment.

○ (i.e. how we can extend
the heap)

● Malloc is built on top of
system commands like
sbrk (and mmap)

https://man7.org/linux/man-pages/man2/mmap.2.html

sbrk example (1/4)

93

● Here is an example of
extending the heap 4
bytes

○ Note: sbrk(0) - returns the
address of the top of the
heap

sbrk example (2/4)

94

● Here is an example of
extending the heap 4
bytes

○ Note: sbrk(0) - returns the
address of the top of the
heap

Question to Audience: Should
we track our allocations and
why? Or not (and why?)

sbrk example (3/4)

95

● Here is an example of
extending the heap 4
bytes

○ Note: sbrk(0) - returns the
address of the top of the
heap

Question to Audience: Should
we track our allocations and
why? Or not (and why?)

For folks answering yes

We need to keep
track of this ‘4’
byte allocation so
we can free our
memory later, and
know to mark ‘4’
bytes as free.

sbrk example (4/4)

96

● Here is an example of
extending the heap 4
bytes

○ Note: sbrk(0) - returns the
address of the top of the
heap

Question to Audience: Should
we track our allocations and
why? Or not (and why?)

For folks answering no

This is a
‘monotonic
allocator’. We
never pay any
cost to ‘free’
memory

Allocators so far (1/2)

1. malloc/free (C), and new/delete (C++)
a. General purpose global allocators that we can allocate and free memory from

2. alloca
a. Special purpose allocator that allows us to allocate memory on the stack

i. (Memory reclaimed when we leave scope)
3. (heap-based) monotonic allocator

a. An allocator that allocates memory on the heap (perhaps using sbrk).
b. We just allocate -- we never or rarely recycle or reclaim memory to use again, even when

we’re done with it.
i. See: https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource (C++17)
ii. Search ‘bump allocator’

1. Again idea is to never free, or maybe free all of the memory at once.

97

https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource

Allocators so far (2/2)

1. malloc/free (C), and new/delete (C++)
a. General purpose global allocators that we can allocate and free memory from

2. alloca
a. Special purpose allocator that allows us to allocate memory on the stack

i. (Memory reclaimed when we leave scope)
3. (heap-based) monotonic allocator

a. An allocator that allocates memory on the heap (perhaps using sbrk).
b. We just allocate -- we never or rarely recycle or reclaim memory to use again, even when

we’re done with it.
i. See: https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource (C++17)
ii. Search ‘bump allocator’

1. Again idea is to never free, or maybe free all of the memory at once.

98

For some of you, this might be
the right strategy! The talk is
effectively done for you :)

For the rest of us, this is a useful
strategy to know about, that we
might combine with others.

Let’s learn about bookkeeping
now :)

https://en.cppreference.com/w/cpp/memory/monotonic_buffer_resource

Tracking Memory (i.e. Bookkeeping)

Allocating with sbrk was easy -- how do we keep track and
free the right amount of memory?

99

How much memory do we free when calling free(p0)? (1/4)

● In order to answer this, we need to do some bookkeeping
● That means creating a data structure to track how much memory we are

using.
○ Note that when we allocate memory, we are actually going to allocate a ‘block’ + the

size of the actual data we want to store (and maybe more metadata as well).
○ The ‘block’ handles the book keeping

100

How much memory do we free when calling free(p0)? (2/4)

● In order to answer this, we need to do some bookkeeping
● That means creating a data structure to track how much memory we are

using.
○ Note that when we allocate memory, we are actually going to allocate a ‘block’ + the

size of the actual data we want to store (and maybe more metadata as well).
○ The ‘block’ handles the book keeping

101

Key idea: Malloc’ing 4
means ‘4’+sizeof(block)
Sometimes we call this the
‘header’ (See end of slide
deck for extra slides)

How much memory do we free when calling free(p0)? (3/4)

●

102

So when we free memory, we look
for the block in a data structure
that holds all of the blocks--and
flip a bit to free.

Now what this could mean, is traversing
through an entire list everytime we want to
free something!

What strategies do we otherwise have?

How much memory do we free when calling free(p0)? (4/4)

●

103

(Quick note)
‘block size’ in the visualization is
actually bigger than the 1-byte
box represented.

○ (For convenience, it is
represented as one box in
some of the figures)

Keeping Track of Memory

Data Structures and strategies

104

Keeping track of memory | Strategy 1 - monotonic allocator (1/6)

● Simply allocate memory as you need
○ No need for a block structure even

105

Keeping track of memory | Strategy 1 - monotonic allocator (2/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));

106

‘A’

Keeping track of memory | Strategy 1 - monotonic allocator (3/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));

107

‘A’‘B’

Keeping track of memory | Strategy 1 - monotonic allocator (4/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
■ char* C = malloc(sizeof(char));

108

‘A’‘B’‘C’

Keeping track of memory | Strategy 1 - monotonic allocator (5/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
■ char* C = malloc(sizeof(char));
■ short* s = malloc(sizeof(short);

109

‘A’‘B’‘C’ ? 0 0

Note: we need to take into consideration
fragmentation (coming up) and alignment,
thus the gap.
[See wiki]

https://en.wikipedia.org/wiki/Data_structure_alignment#Hardware_significance_of_alignment_requirements

Keeping track of memory | Strategy 1 - monotonic allocator (6/6)

● Simply allocate memory as you need
○ No need for a block structure even

■ char* A = malloc(sizeof(char));
■ char* B = malloc(sizeof(char));
■ char* C = malloc(sizeof(char));
■ short* s = malloc(sizeof(short);

● So just to be clear, we are not keeping track of anything here -- our strategy is
keep track of nothing.

110

‘A’‘B’‘C’ ? 0 0 ...

Keeping track of memory | Strategy 2 - Implicit List

● An implicit list keeps track of all of the blocks using length of allocation in the
block structure

○ We have this ‘emergent data structure’ that forms a singly linked list for all of the memory that
we have handed out.

■ Prior to doing a call to sbrk to extend the heap (or mmap), we can then check if a ‘free’
block (marked free in the struct block) and reuse that block.

■ When we ‘free’ memory, we simply retrieve the memory address of the data, subtract the
block size, and mark in that block as free.

111

5 3 8 2

Keeping track of memory | Strategy 3 - Explicit List

● An explicit list maintains a list that only points to free blocks
○ What’s the trade-off?

■ This could make allocation faster--now we iterate through our ‘explicit list’ that points to
blocks of memory that are free of a certain size.

112

5 3 8 2

Keeping track of memory | Strategy 4 - Pool

● Maintain a separate free list for different size classes
○ (i.e. have either multiple linked lists, either explicit or implicit, keeping track of memory)
○ Perhaps size your pools to reasonable values -- all powers of 2

■ Or even better -- sizes of objects in your game/application

113

Allocations of
size 1

Allocations of
size 2

Allocations of
size 4

Allocations of
size 8

etc.

Keeping track of memory | Strategy 5 - Tree

● Maintain a structure that is sorted by
size

○ Some heap, or balanced tree structure
○ (Red-black tree shown and link to the

bottom-right)

114

https://www.gingerbill.org/article/2021/11/30/memory-allocation-
strategies-005/#red-black-tree-approach

https://www.gingerbill.org/article/2021/11/30/memory-allocation-strategies-005/#red-black-tree-approach
https://www.gingerbill.org/article/2021/11/30/memory-allocation-strategies-005/#red-black-tree-approach

Okay, we have a general idea of our storage
mechanism (i.e. data structure) to bookkeep

memory and also find free memory.

What further strategies do we have to
allocate/free memory during run-time?

115

Revisit Naive Strategy -
monotonic allocator

116

● Allocate every time we
need memory (monotonic
allocator)

○ (Also see term bump
allocator)

● I instead want to show
you how to reuse blocks
that have been previously
freed after malloc’ing

○ (See next slide!)

https://github.com/fitzgen/bumpalo
https://github.com/fitzgen/bumpalo

Implicit List: How to find/choose a free block (1/4)

● First fit strategy (For a first allocator, I recommend this for learning)
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

117

Implicit List: How to find/choose a free block (2/4)

● First fit strategy
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

118

Start
here

Implicit List: How to find/choose a free block (3/4)

● First fit strategy
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

119

I found two
blocks here!

Start
here

Implicit List: How to find/choose a free block (4/4)

● First fit strategy
○ Search from beginning of list

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

120

malloc(1)
works here

Start
here

Implicit List: How to find/choose a free block (1/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits

121

Implicit List: How to find/choose a free block (2/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits

122

Start
here

Implicit List: How to find/choose a free block (3/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits

123

malloc(1)
works here
(remember
we need two
blocks--one
to store size)

Start
here

Implicit List: How to find/choose a free block (4/4)

● Next-fit strategy
○ Search from where you left off from your previous search

■ Choose first free block that fits
○ Takes linear time: O(number of allocated and freed blocks)

■ May be better, avoids re-scanning unhelpful blocks if you are doing many similar
allocations

■ Could make fragmentation worse though!

124

malloc(1)
works here
(remember
we need two
blocks--one
to store size)

Start
here

Implicit List: How to find/choose a free block (1/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)

125

Start here
for
malloc(1)

Implicit List: How to find/choose a free block (2/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)

126

malloc(1)
works here

Start here
for
malloc(1)

Implicit List: How to find/choose a free block (3/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)

127

malloc(1)
works here

malloc(1)
works better
here (less
fragmentation)Start here

for
malloc(1)

Implicit List: How to find/choose a free block (4/4)

● Best-fit strategy
○ Scan for the block that fits best

■ i.e. fewest bytes left over
○ Keeps fragmentation small and improves memory utilization
○ Will typically run slower than first-fit (longer scan for optimal block)

128

malloc(1)
works here

malloc(1)
works better
here (less
fragmentation)Start here

for
malloc(1)

Observe that if allocated here instead
of at the end, we would have ‘1’
wasted block (only perhaps available
for the header)

This is known as fragmentation, and
it’s a challenge with memory
allocators

What is Fragmentation?

A challenge with memory allocation

129

Question to Audience: Who has run a disk defragmentor?

130

● It’s good to do
relatively often the
longer you own
your machine and
the more files you
store.

Fragmentation example visualization (1/2)

131

1

2

3

4

5

1

2

3

4

5

Fragmentation example visualization (2/2)

132

Ideally we have
no empty blocks
ever*

We only want to
use what we
need.

These ‘gaps’ are
sometimes a
result of what is
called
fragmentation. *observer we malloc 17 total bytes at most, so that’s our upper bound. At any given time the maximum we have

is ‘15’ bytes, but we always have some extra empty blocks.

Excessive Fragmentation = Poor memory utilization (1/2)

● Two types of fragmentation
a. Internal Fragmentation

■ e.g. we allocate structures smaller
than our block size of X bytes (where
X is architecture dependent)

● (e.g. We allocate 1 character
which is one byte, but our
blocks are given out 8 bytes at
a time)

b. External Fragmentation
■ We have enough blocks (i.e. we don’t

need to extend the heap), but the
allocations are not all contiguous

● -- see on the right that we
cannot malloc(4) for instance. 133

1

2

3

4

5

Excessive Fragmentation = Poor memory utilization (2/2)

● Two types of fragmentation
a. Internal Fragmentation

■ e.g. we allocate structures smaller
than our block size of X bytes (where
X is architecture dependent)

● (e.g. We allocate 1 character
which is one byte, but our
blocks are given out 8 bytes at
a time)

b. External Fragmentation
■ We have enough blocks (i.e. we don’t

need to extend the heap), but the
allocations are not all contiguous

134

1

Note: It is hard up to this point to
know fragmentation will occur based
on the order of mallocs and frees.

We cannot always predict the future.

2

3

4

5

Splitting and Coalescing (i.e. Combining
Blocks)

To help avoid fragmentation/use finite
resources more efficiently

135

Implicit List: How to allocate a free block? (Possible to split) (1/2)

● Depending on our strategy
○ We could allocate to the block found

■ i.e. we set a pointer to that block and size
■ We may want to also split that block if there is room to do so and leave some

reasonable free space for another allocation (See example below)

136

5 3 8 2

Implicit List: How to allocate a free block? (Possible to split) (2/2)

● Depending on our strategy
○ We could allocate to the block found

■ i.e. we set a pointer to that block and size
■ We may want to also split that block if there is room to do so and leave some

reasonable free space for another allocation (See example below)

137

5 3 5

allocate: ‘p’ here that is 4 bytes + header

3 2

Implicit List: How to free a block and combine? (1/3)

● Simply free a block by setting the free bit in the header
○ This could lead to fragmentation however!

138

138

5 3 5 3 2

Implicit List: How to free a block and combine? (2/3)

● Simply free a block by setting the free bit in the header
○ This could lead to fragmentation however!

139

139

5 3 5 3 2

Let’s free p now, and now below
‘p’ is logically free.

Implicit List: How to free a block and combine? (3/3)

● Simply free a block by setting the free bit in the header
○ This could lead to fragmentation however!

140

140

5 3 8 3 2

Could combine (coalesce)
adjacent free blocks into a
bigger block of ‘8’

Global and Local Allocators

(Approaching the ‘finale’ portion of the talk)

141

Global versus Local allocators (1/10)

● So we’ve got a way to grab memory
● We have a way to track memory
● And we have a way to navigate memory

allocations to fit in new memory
○ First-fit, next-fit, best-fit

● We’ve been assuming we get all of the
memory as shown on the right in our
allocator

● This is how ‘malloc’ implementations
operate

142

CPU

M
ai

n
M

em
or

y

Global versus Local allocators (2/10)

● There are some issues that arise with a
global allocator

○ We have a lot of memory to manage -- so we
might get fragmentation

○ (and diffusion -- which is lots of allocations left
all over memory)

143

CPU

M
ai

n
M

em
or

y

Global versus Local allocators (3/10)

● There are some issues that arise with a
global allocator

○ We have a lot of memory to manage -- so we
might get fragmentation

○ (and diffusion -- which is lots of allocations left
all over memory)

144

CPU

M
ai

n
M

em
or

y

Global versus Local allocators (4/10)

● There are some issues that arise with a
global allocator

○ We have a lot of memory to manage -- so we
might get fragmentation

○ We might also have issues of ‘contention’ with
multithreaded programs

■ So let’s imagine two threads are calling
on ‘malloc’ to allocate

■ Essentially we need a global lock
● (another reason heap memory

allocation slows down)

145

CPU

M
ai

n
M

em
or

y

Global versus Local allocators (5/10)

● There are some issues that arise with a
global allocator

○ We have a lot of memory to manage -- so we
might get fragmentation

○ We might also have issues of ‘contention’ with
multithreaded programs

■ So let’s imagine two threads are calling
on ‘malloc’ to allocate

■ Essentially we need a global lock
● (another reason heap memory

allocation slows down)

146

CPU

M
ai

n
M

em
or

y

t2t1

Threads t1 and t2 searching
for open memory need to
obtain a lock first

Global versus Local allocators (6/10)

● There are some issues that arise with a
global allocator

○ We have a lot of memory to manage -- so we
might get fragmentation

○ We might also have issues of ‘contention’ with
multithreaded programs

■ So let’s imagine two threads are calling
on ‘malloc’ to allocate

■ Essentially we need a global lock
● (another reason heap memory

allocation slows down)
○ And we haven’t touched on locality yet -- but

because we’ve guided our program to look
everywhere for memory, this has implications
on cache performance.

147

CPU

M
ai

n
M

em
or

y

Global versus Local allocators (7/10)

● One strategy is to use ‘local allocators’
that are given a few pages (or some
other fixed allocation size that you
choose)

148

CPU

148

M
ai

n
M

em
or

y

Global versus Local allocators (8/10)

● One strategy is to use ‘local allocators’
that are given a few pages (or some
other fixed allocation size that you
choose)

149

CPU

149

M
ai

n
M

em
or

y

Region 1

Region 2

Global versus Local allocators (9/10)

● One strategy is to use ‘local allocators’
that are given a few pages (or some
other fixed allocation size that you
choose)

○ Now within each of these regions, you might
have different allocation strategies themselves!

■ e.g.
● Region 1 is a pool allocator with

certain fixed sizes
● Region 2 acts as a general purpose

allocator
○ And if Region 2 runs out of

memory, it could fall back to
‘malloc’ for instance 150

CPU

150

M
ai

n
M

em
or

y

Region 1

Region 2

Global versus Local allocators (10/10)

● Kind of neat if we size ‘Region 1’ to
match your L1/L2/L3/L4 cache size for
some subsystem that you’re utilizing.

● Kind of neat if ‘Region 1’ and ‘Region 2’
can be used safely from separate threads

○ i.e. we can avoid some contention
● Kind of neat if you can fit one subsystem

(graphics, AI, physics) in a specific region

151

CPU

151

M
ai

n
M

em
or

y

Region 1

Region 2

Region 1

C
ac

he

Here is some
‘example’ of how you
might structure an
arena allocator

(This is purely
slideware, but
probably a reasonable
interface to build off
of)

152

Some more Ideas and Best Practices

153

mmap

154

● Our strategy of using ‘sbrk’ to
allocate works

● But making calls to ‘sbrk’
constantly is performing many
systems calls

● Instead, we typically allocate
in ‘page size’ increments and
can use mmap to ask for
larger allocations.

○ sbrk again might be used for
small heap allocations in a
global allocator

Potentially Ideal ‘Heap’ Memory Management

● Only one large heap allocation (at the start of the program) in order avoid
system calls context switches.
○ i.e. allocate one big chunk (e.g. malloc(100000000); or new data[10000000];)
○ Note: This is essentially what we do per process for stack memory -- just allocate once.

● Once we have our large block of memory, you can then divide it up as needed
and perform bookkeeping
○ Again, take advantage of your custom memory allocator to handle when a programmer asks

for memory.

155

A few more ideas

● Consider trying to avoid dynamic memory allocations altogether!
○ e.g. static strings allocated in static portion of memory
○ e.g. create static containers
○ e.g. small string allocations (small string allocations get stored on stack

■ i.e. think about where you can put memory

156

Conclusion and Further Resources
Wrapping up what we’ve learned

157

Summary on Memory Allocation

158

● We should have a good understanding of stack and heap
○ And the tradeoffs when allocating in each segment of memory in our process

● We’ve discussed motivation on why we might want to move away from using
a general purpose heap allocator (e.g. malloc)

○ We’ve looked at some different memory allocator strategies
○ We’ve looked at some allocator designs

■ alloca
■ monotonic
■ various dynamic memory allocators using ‘sbrk’
■ LocalArena allocator

The Next 3 Resources to Learn More (1/3)

(Listed in the order I think they should be read/watched)

1. Computer Systems: A Programmer’s Perspective (Wonderful book)
a. Book used in Carnegie Mellon Course on Systems

2. Jason Gregory
a. Game Engine Architecture
b. https://www.gameenginebook.com/ (The book is wonderful!)

3. John Lakos Arena allocators talk
a. https://www.youtube.com/watch?v=xUtndRUJHX8&t=1s

159

https://www.cs.cmu.edu/~213/
https://www.gameenginebook.com/
https://www.youtube.com/watch?v=xUtndRUJHX8&t=1s

Resources (2/3)

● Jason Gregory’s book “Game Engine Architecture”
is where I learned a lot of this stuff a few years ago

○ https://www.gameenginebook.com/
● (And Jason has presented at an iteration of

handmade -- how I originally found out about
Handmade Seattle!)

160

https://www.gameenginebook.com/

Resources (3/3)

● Ryan Fleury blog post
○ https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator (Thank you for sending this Abner)

● Emery Bergers paper on custom memory allocators vs malloc (2002)
○ “On reconsidering memory management)

● Emery Berger paper on Hoard
https://en.wikipedia.org/wiki/Hoard_memory_allocator

● More overview on different types of memory allocators
○ https://www.openmp.org/spec-html/5.0/openmpsu53.html

● See other allocation strategies
○ Slab allocator (GNU libc)
○ Buddy system (linux kernel)

● Googles allocator tcmalloc [github]
● jemalloc [https://jemalloc.net/] [github] [Video]
● CppCon 2017: Pablo Halpern “Allocators: The Good Parts”

161

https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator
https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
https://en.wikipedia.org/wiki/Hoard_memory_allocator
https://www.openmp.org/spec-html/5.0/openmpsu53.html
https://github.com/google/tcmalloc
https://jemalloc.net/
https://github.com/jemalloc
https://www.youtube.com/watch?v=RcWp5vwGlYU
https://www.youtube.com/watch?v=v3dz-AKOVL8

Small Aside

● Of the two books in my ‘Building
Game Engines’ -- they are from
two speakers who’ve presented in
the Handmade community

○ Jason Gregory -- Game Engine
Architecture

○ Robert Nystrom -- Game Programming
Patterns

● Go buy the books if you are able,
they’re worth every dollar to
support the authors.

162

Introduction to Memory Allocation:
Design and Implementation

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 163

Thank you!

17:00-18:00, Wed, 16th November 2022
https://handmade-seattle.com/
60 minutes | Introductory/Intermediate Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
https://handmade-seattle.com/

Extras and Notes

164

